886 resultados para neutrophil oxidative burst
Resumo:
A new reaction mode, i.e., the combined single-pass conversion of methane via oxidative coupling (OCM) over mixed metal oxide (SLC) catalysts and dehydroaromatization (MDA) over Mo/HZSM-5 catalysts, is reported. With the assistance of an OCM reaction over SLC catalysts in the top layer of the reactor, the deactivation resistance of Mo/HZSM-5 catalysts is remarkably enhanced. Under the selected reaction conditions, the CH(4) conversion decreased from similar to18 to similar to1% and the aromatics yield decreased from 12.8 to 0.1%, respectively, after running the reaction for 960 min on both 6Mo/HZSM-5 and SLC-6Mo/HZSM-5 catalyst system without O(2) in the feed. On the other hand, for the SLC-6Mo/HZSM-5 catalyst system with O(2) in the feed, the deactivation was improved greatly, and after 960 min onstream the CH(4) conversion and aromatics yield were still as high as 12.0 and 8.0%, respectively. The promotion effect mainly appears to be associated with in situ formation of CO(2) in the OCM layer, which reacts with coke via the reverse Boudouard reaction.
Resumo:
Oxidative dehydrogenation of propane (ODP) to propylene was investigated in a dense tubular membrane reactor made of Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) at 700degreesC and 750degreesC. The propylene selectivity in the membrane reactor (44.2%) is much higher than that in the fixed-bed reactor (15%) at the similar propane conversion (23-27%). Higher propylene selectivity in the membrane reactor was attributed to the lattice oxygen (O2-) supplied through the membrane.
Reaction process phase transfer catalysis for selective oxidative-reductive carbonylation to monuron
Resumo:
A new process has been suggested for converting natural gas to ethylene by combining oxidative coupling of methane with ethane dehydrogenation to provide an efficient method for the utilization of thermicity and CO2. From their thermodynamics, it is clear that the exothermicity from CH4 oxidative coupling reaction (DeltaH(800degreesC) = -174.3 kJ mol(-1)) can support C2H6 dehydrogenation by CO2 (DeltaH(800degreesC) = + 180.2 kJ mol(-1)). Meanwhile, the two reactions can be conducted under the same reaction conditions, such as the reaction temperature and reaction pressure as well as space velocity. In addition, the CO2 yielded from CH4 oxidative coupling reaction can be directly used for C2H6 dehydrogenation. Two kinds of catalyst are developed for this combined process with an achievement, from which C2H4 content in tail gas can reach attractively 16.4%, which can be used directly to produce ethylbenzene by the alkylation of benzene. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Polyaniline was used as a nonmetal catalyst in the oxidative dehydrogenation of ethylbenzene and yield of 22.9% at 573 K and similar to 40% at 673 K were obtained, respectively. An indirect oxidative dehydrogenation mechanism was proposed based on the results of pulse reactions.
Resumo:
convenient and efficient synthesis of spiro-fused pyrazolin-5-one N-oxides starting from readily available 1-carbamoyl-1-oximylcycloalkanes is developed. This general protocol features a novel and facile way for access to the five-membered azaheterocycles by formation of a new N-N single bond. The key cyclization step utilizes the formation of an N-oxonitrenium intermediate, mediated by the hypervalent iodine reagent PIFA, and its subsequent intramolecular trapping by the amide moiety under rather mild experimental conditions.
Resumo:
The product selectivity can be controlled by adding acetic acid in feed over vanadium phosphate (VPO) in gas phase oxidative dehydrogenation (ODH), in which cyclohexane and cyclohexene are oxidized to cyclohexene and 1,3-cyclohexadiene (1,3-CHD), respectively, at almost 100% selectivity. This approach is also an efficient method to capture the very unstable intermediates in the mechanism study.
Resumo:
alpha(1)-VOPO4, alpha(II)-VOPO4 and beta-VOPO4 have been investigated as catalysts for the gas phase oxidative dehydrogenation (ODH) of cyclohexane to cyclohexene with the addition of acetic acid (HOAc) in the feeds in a fixed bed reactor. Different VOPO4 phases showed different acidity and reducibility. beta-VOPO4 phase is more active than alpha(I)-VOPO4 and alpha(II)-VOPO4 in the ODH without acetic acid addition. In the presence of acetic acid, the acidity of the catalyst may play an important role in the ODH process. Due to higher acidity, alpha(I)-VOPO4 phase catalyst gives better catalytic performances than alpha(I)-VOPO4 and beta-VOPO4 for the ODH of cyclohexane by adding of acetic acid in the reactants.
Resumo:
The effect of adding acetic acid on the product distribution in gas phase oxidative dehydrogenation of cyclohexane over alpha(1)-VOPO4 catalyst was investigated. The role of acetic acid in the reaction process was put forward. The proposed mechanism is that acetic acid take precedence of cyclohexane adsorbing on the active sites of alpha(1)-VOPO4 catalyst to form isolated active site. Thus, cyclohexene species can desorb quickly from the active sites, avoiding its deep oxidation dehydrogenation. Almost 100% selectivity to cyclohexene could be obtained when the molar ratio of acetic acid to cyclohexane was 12.9:1 at 450 degrees C, the conversion of cyclohexane was 6.9%.
Resumo:
By [2 + 2] Schiff base condensation of 5 - bromo - 2 - methoxylbenzene - 1,3 - dicarboxaldehyde with diethylenetriamine, a new hexaaza 24 - membered macrocyclic ligand was obtained,which formed a macrocyclic binuclear copper(I) complex in the presence of [Cu . (CH3CN)(4)]ClO4. When the copper(I) complex was oxidized in air or oxygen, a new macrocyclic binuclear copper( II) complex was obtained. The copper( II.) complex was characterized by several methods and its oxidized products was characterized by H-1 NMR. The results show that during oxidation, a methoxyl group in the ligand ring broke; and the phenoxy - and water - bridged Cu(II) complex formed. In oxidation of monooxygenase such as ligninase, oxidative demethylation also happened. Therefore this work mimicked this process for the first time by using macrocyclic complex. The quantity of absorbed oxygen and the absorption rate of oxygen were determined.