961 resultados para medical applications


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Causal inference with a continuous treatment is a relatively under-explored problem. In this dissertation, we adopt the potential outcomes framework. Potential outcomes are responses that would be seen for a unit under all possible treatments. In an observational study where the treatment is continuous, the potential outcomes are an uncountably infinite set indexed by treatment dose. We parameterize this unobservable set as a linear combination of a finite number of basis functions whose coefficients vary across units. This leads to new techniques for estimating the population average dose-response function (ADRF). Some techniques require a model for the treatment assignment given covariates, some require a model for predicting the potential outcomes from covariates, and some require both. We develop these techniques using a framework of estimating functions, compare them to existing methods for continuous treatments, and simulate their performance in a population where the ADRF is linear and the models for the treatment and/or outcomes may be misspecified. We also extend the comparisons to a data set of lottery winners in Massachusetts. Next, we describe the methods and functions in the R package causaldrf using data from the National Medical Expenditure Survey (NMES) and Infant Health and Development Program (IHDP) as examples. Additionally, we analyze the National Growth and Health Study (NGHS) data set and deal with the issue of missing data. Lastly, we discuss future research goals and possible extensions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

COMPASS is an experiment at CERN’s SPS whose goal is to study hadron structure and spectroscopy. The experiment includes a wide acceptance RICH detector, operating since 2001 and subject to a major upgrade of the central region of its photodetectors in 2006. The remaining 75% of the photodetection area are still using MWPCs from the original design, who suffer from limitations in gain due to aging of the photocathodes from ion bombardment and due to ion-induced instabilities. Besides the mentioned limitations, the increased luminosity conditions expected for the upcoming years of the experiment make an upgrade to the remaining detectors pertinent. This upgrade should be accomplished in 2016, using hybrid detectors composed of ThGEMs and MICROMEGAS. This work presents the study, development and characterization of gaseous photon detectors envisaging the foreseen upgrade, and the progress in production and evaluation techniques necessary to reach increasingly larger area detectors with the performances required. It includes reports on the studies performed under particle beam environment of such detectors. MPGD structures can also be used in a variety of other applications, of which nuclear medical imaging is a notorious example. This work includes, additionally, the initial steps in simulating, assembling and characterizing a prototype of a gaseous detector for application as a Compton Camera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with tensor completion for the solution of multidimensional inverse problems. We study the problem of reconstructing an approximately low rank tensor from a small number of noisy linear measurements. New recovery guarantees, numerical algorithms, non-uniform sampling strategies, and parameter selection algorithms are developed. We derive a fixed point continuation algorithm for tensor completion and prove its convergence. A restricted isometry property (RIP) based tensor recovery guarantee is proved. Probabilistic recovery guarantees are obtained for sub-Gaussian measurement operators and for measurements obtained by non-uniform sampling from a Parseval tight frame. We show how tensor completion can be used to solve multidimensional inverse problems arising in NMR relaxometry. Algorithms are developed for regularization parameter selection, including accelerated k-fold cross-validation and generalized cross-validation. These methods are validated on experimental and simulated data. We also derive condition number estimates for nonnegative least squares problems. Tensor recovery promises to significantly accelerate N-dimensional NMR relaxometry and related experiments, enabling previously impractical experiments. Our methods could also be applied to other inverse problems arising in machine learning, image processing, signal processing, computer vision, and other fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibre-optic components and systems are used in a wide variety of industrial, medical and communication applications and can be found in use everywhere in the modern world, from the bottom of the ocean to satellites in orbit. The field of fibre optics has seen rapid growth in the past few decades to become an essential enabling technology. However, much more work is needed to develop components and systems that can work at wavelengths in the short-wavelength infrared (SWIR) / mid-IR part of the spectrum (defined in this work as 1.5 – 4.5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In molecular medicine, the manipulation of cells is prerequisite to evaluate genes as therapeutic targets or to transfect cells to develop cell therapeutic strategies. To achieve these purposes it is essential that given transfection techniques are capable of handling high cell numbers in reasonable time spans. To fulfill this demand, an alternative nanoparticle mediated laser transfection method is presented herein. The fs-laser excitation of cell-adhered gold nanoparticles evokes localized membrane permeabilization and enables an inflow of extracellular molecules into cells. Results: The parameters for an efficient and gentle cell manipulation are evaluated in detail. Efficiencies of 90% with a cell viability of 93% were achieved for siRNA transfection. The proof for a molecular medical approach is demonstrated by highly efficient knock down of the oncogene HMGA2 in a rapidly proliferating prostate carcinoma in vitro model using siRNA. Additionally, investigations concerning the initial perforation mechanism are conducted. Next to theoretical simulations, the laser induced effects are experimentally investigated by spectrometric and microscopic analysis. The results indicate that near field effects are the initial mechanism of membrane permeabilization. Conclusion: This methodical approach combined with an automated setup, allows a high throughput targeting of several 100,000 cells within seconds, providing an excellent tool for in vitro applications in molecular medicine. NIR fs lasers are characterized by specific advantages when compared to lasers employing longer (ps/ns) pulses in the visible regime. The NIR fs pulses generate low thermal impact while allowing high penetration depths into tissue. Therefore fs lasers could be used for prospective in vivo applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This text is taken from the postgraduate thesis, which one of the authors (A.B.) developed for the degree of Medical Physicist in the School on Medical Physics of the University of Florence. The text explores the feasibility of quantitative Magnetic Resonance Spectroscopy as a tool for daily clinical routine use. The results and analysis comes from two types of hyper spectral images: the first set are hyper spectral images coming from a standard phantom (reference images); and hyper spectral images obtained from a group of patients who have undergone MRI examinations at the Santa Maria Nuova Hospital. This interdisciplinary work stems from the IFAC-CNR know how in terms of data analysis and nanomedicine, and the clinical expertise of Radiologists and Medical Physicists. The results reported here, which were the subject of the thesis, are original, unpublished, and represent independent work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Opuntia spp. flowers have been traditionally used for medical purposes, mostly because of their diversity in bioactive molecules with health promoting properties. The proximate, mineral and volatile compound profiles, together with the cytotoxic and antimicrobial properties were characterized in O. microdasys flowers at different maturity stages, revealing several statistically significant differences. O. microdasys stood out mainly for its high contents of dietary fiber, potassium and camphor, and its high activities against HCT15 cells, Staphylococcus aureus, Aspergillus versicolor and Penicillium funiculosum. The vegetative stage showed the highest cytotoxic and antifungal activities, whilst the full flowering stage was particularly active against bacterial species. The complete dataset has been classified by principal component analysis, achieving clearly identifiable groups for each flowering stage, elucidating also the most distinctive features, and comprehensively profiling each of the assayed stages. The results might be useful to define the best flowering stage considering practical application purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces the Multidisciplinary Assessment of Technology Centre for Healthcare (MATCH) and outlines the problem of integrating a user-centred approach for development of medical devices together with the information and communication technology environments in which they are increasingly required to operate. We highlight some of the regulatory requirements that are relevant to user needs consideration in medical device development. Finally, we reveal a range of limitations in the current practice of the medical device industry in the area of user needs capture, based on responses from interviews with MATCH’s industry partners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Ethics is defined as the entirety of moral principles that form the basis of individuals’ behavior; it can also be defined as “moral theory” or “theoretical ethics”. Objectives: To determinate information and applications related to ethical codes of pediatric nurses. Patients and Methods: Participants were nurses attending the Neonatal Intensive Care Unit Nursing Course and the Pediatric Nursing Course conducted in Istanbul between September 2011 and December 2012. A total of nurses attending the courses at the specified dates and who agreed to participate in the study were included in the analysis. Data were collected through a questionnaire that we developed in accordance with current literature on nursing ethics. Results: 140 nurses participated in this study. Information and applications were related to ethical codes of nurses including four categories; autonomy, beneficence, nonmaleficence, justice. The principle of confidentiality/keeping secrets. Exactly 64.3% of nurses reported having heard of nursing ethical codes. The best-known ethical code was the principle of justice. Furthermore, while the rates were generally low, some nurses engaged in unethical practices such as patient discrimination and prioritizing acquaintances. Conclusions: We conclude that most nurses working in pediatric clinics act in compliance with ethical codes. We also found that the majority of nurses wanted to learn about ethical codes. For this reason, we recommended that nurses working in clinics and future nurses in training be informed of the appropriate ethical behavior and codes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast magnesium alloys, 2) evaluating the biocompatibility of the as-cast magnesium alloys through the use of in-vitro cellular studies, and 3) profiling the degradation kinetics of the as-cast magnesium alloys through the use of electrochemical potentiodynamic polarization techqnique as well as gravimetric weight-loss methods. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties with elongation at failure values of 12% and 13% for the Mg-Zn-Se and Mg-Zn-Se alloys, respectively. This is substantially higher than other as-cast magnesium alloys that have elongation at failure values that range from 7-10%. Biocompatibility tests revealed that both the Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. Gravimetric and electrochemical testing was indicative of the weight loss and initial corrosion behavior of the alloys once immersed within a simulated body fluid. The development of these novel as-cast magnesium alloys provide an advancement to the field of degradable metallic materials, while experimental results indicate their potential as cost-effective medical devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the medical field images obtained from high definition cameras and other medical imaging systems are an integral part of medical diagnosis. The analysis of these images are usually performed by the physicians who sometimes need to spend long hours reviewing the images before they are able to come up with a diagnosis and then decide on the course of action. In this dissertation we present a framework for a computer-aided analysis of medical imagery via the use of an expert system. While this problem has been discussed before, we will consider a system based on mobile devices. Since the release of the iPhone on April 2003, the popularity of mobile devices has increased rapidly and our lives have become more reliant on them. This popularity and the ease of development of mobile applications has now made it possible to perform on these devices many of the image analyses that previously required a personal computer. All of this has opened the door to a whole new set of possibilities and freed the physicians from their reliance on their desktop machines. The approach proposed in this dissertation aims to capitalize on these new found opportunities by providing a framework for analysis of medical images that physicians can utilize from their mobile devices thus remove their reliance on desktop computers. We also provide an expert system to aid in the analysis and advice on the selection of medical procedure. Finally, we also allow for other mobile applications to be developed by providing a generic mobile application development framework that allows for access of other applications into the mobile domain. In this dissertation we outline our work leading towards development of the proposed methodology and the remaining work needed to find a solution to the problem. In order to make this difficult problem tractable, we divide the problem into three parts: the development user interface modeling language and tooling, the creation of a game development modeling language and tooling, and the development of a generic mobile application framework. In order to make this problem more manageable, we will narrow down the initial scope to the hair transplant, and glaucoma domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decades, the possibility to generate plasma at atmospheric pressure gave rise to a new emerging field called plasma medicine; it deals with the application of cold atmospheric pressure plasmas (CAPs) or plasma-activated solutions on or in the human body for therapeutic effects. Thanks to a blend of synergic biologically active agents and biocompatible temperatures, different CAP sources were successfully employed in many different biomedical applications such as dentistry, dermatology, wound healing, cancer treatment, blood coagulation, etc.… Despite their effectiveness has been verified in the above-mentioned biomedical applications, over the years, researchers throughout the world described numerous CAP sources which are still laboratory devices not optimized for the specific application. In this perspective, the aim of this dissertation was the development and the optimization of techniques and design parameters for the engineering of CAP sources for different biomedical applications and plasma medicine among which cancer treatment, dentistry and bioaerosol decontamination. In the first section, the discharge electrical parameters, the behavior of the plasma streamers and the liquid and the gas phase chemistry of a multiwire device for the treatment of liquids were performed. Moreover, two different plasma-activated liquids were used for the treatment of Epithelial Ovarian Cancer cells and fibroblasts to assess their selectivity. In the second section, in accordance with the most important standard regulations for medical devices, were reported the realization steps of a Plasma Gun device easy to handle and expected to be mounted on a tabletop device that could be used for dental clinical applications. In the third section, in relation to the current COVID-19 pandemic, were reported the first steps for the design, realization, and optimization of a dielectric barrier discharge source suitable for the treatment of different types of bioaerosol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This PhD project has been mainly focused on the synthesis of novel organic compounds containing heterocyclic and/or carbocyclic scaffold and on the study of stearic acid derivatives and their applications in biological field. The synthesis of novel derivatives of 9-hydroxystearic acid (9-HSA) evidenced how the presence of substituents on C9, able to make hydrogen bonds is of crucial importance for the biological activity. Also the position of the hydroxy group along the chain of hydroxystearic acids was investigated: regioisomers with the hydroxy group bound to odd carbons resulted more active than those bearing the hydroxy group on even carbons. Further, the insertion of (R)-9-HSA in magnetic nanoparticles gave a novel material which characterization remarked its suitability for drug delivery. Structural hybrids between amino aza-heterocycles and azelaic acid have been synthesized and some of them showed a selective activity towards osteosarcoma cell line U2OS. Several Apcin analogues bearing indole, benzothiazole, benzofurazan moieties connected to tryptaminyl-, amino pyridinyl-, pyrimidinyl- and pyrazinyl ring through a 1,1,1-trichloroethyl group were synthesized. Biological tests showed the importance of both the tryptaminyl and the pyrimidinyl moieties, confirming the effectiveness against acute leukemia models. The SNAr between 2-aminothiazole derivatives and 7-chlorodinitrobenzofuroxan revealed different behaviour depending from amino substituent of the thiazole. The reaction with 2-N-piperidinyl-, 2-N-morpholinyl-, or 2-N-pyrrolidinyl thiazole gave two isomeric species derived from the attack on C-5 of thiazole ring. Thiazoles substituted with primary- or not-cyclic secondary amines reacted with the exocyclic amino nitrogen atom giving a series of compounds whose biological activity have highlighted as they might be promising candidates for further development of antitumor agents. A series of 9-fluorenylidene derivatives, of interest in medical and optoelectronic field as organic scintillators, was synthesized through Wittig or Suzuky reaction and will be analyzed to test their potential scintillatory properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Plasma Focus device can confine in a small region a plasma generated during the pinch phase. When the plasma is in the pinch condition it creates an environment that produces several kinds of radiations. When the filling gas is nitrogen, a self-collimated backwardly emitted electron beam, slightly spread by the coulomb repulsion, can be considered one of the most interesting outputs. That beam can be converted into X-ray pulses able to transfer energy at an Ultra-High Dose-Rate (UH-DR), up to 1 Gy pulse-1, for clinical applications, research, or industrial purposes. The radiation fields have been studied with the PFMA-3 hosted at the University of Bologna, finding the radiation behavior at different operating conditions and working parameters for a proper tuning of this class of devices in clinical applications. The experimental outcomes have been compared with available analytical formalisms as benchmark and the scaling laws have been proposed. A set of Monte Carlo models have been built with direct and adjoint techniques for an accurate X-ray source characterization and for setting fast and reliable irradiation planning for patients. By coupling deterministic and Monte Carlo codes, a focusing lens for the charged particles has been designed for obtaining a beam suitable for applications as external radiotherapy or intra-operative radiation therapy. The radiobiological effectiveness of the UH PF DR, a FLASH source, has been evaluated by coupling different Monte Carlo codes estimating the overall level of DNA damage at the multi-cellular and tissue levels by considering the spatial variation effects as well as the radiation field characteristics. The numerical results have been correlated to the experimental outcomes. Finally, ambient dose measurements have been performed for tuning the numerical models and obtaining doses for radiation protection purposes. The PFMA-3 technology has been fully characterized toward clinical implementation and installation in a medical facility.