946 resultados para mathematical modelling of soil erosion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

From the geotechnical standpoint, it is interesting to analyse the soil texture in regions with rough terrain due to its relation with the infiltration and runoff processes and, consequently, the effect on erosion processes. The purpose of this paper is to present a methodology that provides the soil texture spatialization by using Fuzzy logic and Geostatistic. The results were correlated with maps drawn specifically for the study area. The knowledge of the spatialization of soil properties, such as the texture, can be an important tool for land use planning in order to reduce the potential soil losses during rain seasons. (c) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of Spatial Statistics 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(hydroxybutyrate-co-valerate) (PHBV) and poly(epsilon-caprolactone) (PCL) PCL/PHBV (4:1) blend films were prepared by melt-pressing. The biodegradation of the films in response to burial in soil for 30 days was investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TG). The PHBV film was the most susceptible to microbial attack, since it was rapidly biodegraded via surface erosion in 15 days and completely degraded in 30 days. The PCL film also degraded but more slowly than PHBV. The degradation of the PCL/PHBV blend occurred in the PHBV phase, inducing changes in the PCL phases (interphase) and resulting in an increase of its crystalline fraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aimed to study the space behavior of the water erosion in a red-yellow latosol. Then a study was developed in an area with colinon coffee cultivation in an Experimental Farm of Bananal do Norte of INCAPER in Cachoeiro de Itapemirim - ES. Soil samples were obtained from 0,0 to 0,20 m depth in an irregular grid with 109 samples. The analyzed variables were granulometric fractions, erodibility (K), natural erosion potential (PNE), soil loss (A) and erosion risk (RE). All the variables showed space dependency with moderate index of space dependency and similar standard of space distribution. The soil loss is related with the space distribution of the granulometric fractions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In variable-amplitude loading there are interaction effects between the loading history and the crack propagation rate. The most important of these effects is the retardation in the crack propagation, which may raise the life of the cracked structureconsiderably. The main objective of this research is to analyse and quantify the retardation of crack propagation in a thin plate of the high-resistance aluminium alloy 2024-T3, comparing the results obtained from the mathematical models proposed to account for the retardation effect. The specimens were tested under high-low loading sequences, for different crack sizes and overload ratios. A simplified model was developed, based on crack closure theory, that could represent the crack behaviour during retardation very well. © 1991.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental model and a mathematical model with the introduction of a ramp in the channel of Obenaus model are presented. The aim is to present a better reproduction of the real layer pollution deposited on the HV insulators. This better reproduction is obtained from two types of thickness variation: the introduction of a ramp (soft variation) and the introduction of a step (sudden variation). The computational simulations and the experimental data suggest that the introduction of the ramp is the better reproduction of the layer pollution. The ramp approximates to the real layer pollution more than the step.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human activities have been driven land cover, provoking acceleration of the erosive process and alteration on the soil characteristics. To explore the effects of human disturbance, we investigated the influences of natural and anthropogenic features on soil quality and soil erosion indicators (EI) within a Brazilian rural watershed located in Bauru Municipality, State of So Paulo. A pre-established set of soil EI was used to evaluate the influence of anthropogenic land cover categories on the presence and severity of erosion, related with spatial variations of soil attributes. On-site visits were carried out to measure the occurrence and the intensity of eleven separate EI values and to collect undisturbed topsoil samples for subsequent analyses. We registered 17 occurrences of EIs, distributed in ten locals. Occurrence and intensity of EIs were related to degree of sheet erosion. The EI qualities were more strongly associated with land cover management practices than to local topographic features. The occurrence of EIs and characteristics of soil and soil organic matter (SOM) were not significantly self-correlated. Although land cover class seems to influence soil properties and SOM attributes, we observed that the granulometric composition of the soils also contributes to the structural characteristics of the soil and consequently to the dynamic loss and gain of soil carbon. Sites covered with natural remnant vegetation (NRV) store 96.5 Mg ha(-1) of C and grassy and tilled soils stored more C than NRV, 100.1 and 142.4 Mg ha(-1), respectively. Due to the influence of soil texture over the soil C dynamic, we observe that in Bauru, pastured areas have high potential for sequestration of C if factors such as fire and/or erosion were avoided or effectively controlled. Results from this study show that human disturbance substantially affects soil properties within of southeastern region of Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed monitoring of the groundwater table can provide important data about both short- and long-term aquifer processes, including information useful for estimating recharge and facilitating groundwater modeling and remediation efforts. In this paper, we presents results of 4 years (2002 to 2005) of monitoring groundwater water levels in the Rio Claro Aquifer using observation wells drilled at the Rio Claro campus of São Paulo State University in Brazil. The data were used to follow natural periodic fluctuations in the water table, specifically those resulting from earth tides and seasonal recharge cycles. Statistical analyses included methods of time-series analysis using Fourier analysis, cross-correlation, and R/S analysis. Relationships could be established between rainfall and well recovery, as well as the persistence and degree of autocorrelation of the water table variations. We further used numerical solutions of the Richards equation to obtain estimates of the recharge rate and seasonable groundwater fluctuations. Seasonable soil moisture transit times through the vadose zone obtained with the numerical solution were very close to those obtained with the cross-correlation analysis. We also employed a little-used deep drainage boundary condition to obtain estimates of seasonable water table fluctuations, which were found to be consistent with observed transient groundwater levels during the period of study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods of recording soil erosion using photographs exist but they are not commonly considered in scientific studies. Digital images may hold an expressive amount of information that can be extracted quickly in different manners. The investigation of several metrics that were initially developed for landscape ecology analysis constitutes one method. In this study we applied a method of landscape metrics to quantify the spatial configuration of surface micro-topography and erosion-related features, in order to generate a possible complementary tool for environmental management. In a 3.7 m wide and 9.7 m long soil box used during a rainfall simulation study, digital images were systematically acquired in four instances: (a) when the soil was dry; (b) after a short duration rain for initial wetting; (c) after the first erosive rain; and (d) after the 2nd erosive rain. Thirteen locations were established in the box and digital photos were taken at these locations with the camera positioned at the same orthogonal distance from the soil surface under the same ambient light intensity. Digital photos were converted into bimodal images and seven landscape metrics were analyzed: percentage of land, number of patches, density of patches, largest patch index, edge density, shape index, and fractal dimension. Digital images were an appropriate tool because they can generate data very quickly. The landscape metrics were sensitive to changes in soil surface micro-morphology especially after the 1st erosive rain event, indicating significant erosional feature development between the initial wetting and first erosive rainfall. The method is considered suitable for spatial patterns of soil micro-topography evolution from rainfall events that bear similarity to landscape scale pattern evolution from eco-hydrological processes. Although much more study is needed for calibrating the landscape metrics at the micro-scale, this study is a step forward in demonstrating the advantages of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a network representation for real soil samples and mathematical models for microbial spread, we show that the structural heterogeneity of the soil habitat may have a very significant influence on the size of microbial invasions of the soil pore space. In particular, neglecting the soil structural heterogeneity may lead to a substantial underestimation of microbial invasion. Such effects are explained in terms of a crucial interplay between heterogeneity in microbial spread and heterogeneity in the topology of soil networks. The main influence of network topology on invasion is linked to the existence of long channels in soil networks that may act as bridges for transmission of microorganisms between distant parts of soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical models of the knee joint are important tools which have both theoretical and practical applications. They are used by researchers to fully understand the stabilizing role of the components of the joint, by engineers as an aid for prosthetic design, by surgeons during the planning of an operation or during the operation itself, and by orthopedists for diagnosis and rehabilitation purposes. The principal aims of knee models are to reproduce the restraining function of each structure of the joint and to replicate the relative motion of the bones which constitute the joint itself. It is clear that the first point is functional to the second one. However, the standard procedures for the dynamic modelling of the knee tend to be more focused on the second aspect: the motion of the joint is correctly replicated, but the stabilizing role of the articular components is somehow lost. A first contribution of this dissertation is the definition of a novel approach — called sequential approach — for the dynamic modelling of the knee. The procedure makes it possible to develop more and more sophisticated models of the joint by a succession of steps, starting from a first simple model of its passive motion. The fundamental characteristic of the proposed procedure is that the results obtained at each step do not worsen those already obtained at previous steps, thus preserving the restraining function of the knee structures. The models which stem from the first two steps of the sequential approach are then presented. The result of the first step is a model of the passive motion of the knee, comprehensive of the patello-femoral joint. Kinematical and anatomical considerations lead to define a one degree of freedom rigid link mechanism, whose members represent determinate components of the joint. The result of the second step is a stiffness model of the knee. This model is obtained from the first one, by following the rules of the proposed procedure. Both models have been identified from experimental data by means of an optimization procedure. The simulated motions of the models then have been compared to the experimental ones. Both models accurately reproduce the motion of the joint under the corresponding loading conditions. Moreover, the sequential approach makes sure the results obtained at the first step are not worsened at the second step: the stiffness model can also reproduce the passive motion of the knee with the same accuracy than the previous simpler model. The procedure proved to be successful and thus promising for the definition of more complex models which could also involve the effect of muscular forces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis, included within the THESEUS project, is the development of a mathematical model 2DV two-phase, based on the existing code IH-2VOF developed by the University of Cantabria, able to represent together the overtopping phenomenon and the sediment transport. Several numerical simulations were carried out in order to analyze the flow characteristics on a dike crest. The results show that the seaward/landward slope does not affect the evolution of the flow depth and velocity over the dike crest whereas the most important parameter is the relative submergence. Wave heights decrease and flow velocities increase while waves travel over the crest. In particular, by increasing the submergence, the wave height decay and the increase of the velocity are less marked. Besides, an appropriate curve able to fit the variation of the wave height/velocity over the dike crest were found. Both for the wave height and for the wave velocity different fitting coefficients were determined on the basis of the submergence and of the significant wave height. An equation describing the trend of the dimensionless coefficient c_h for the wave height was derived. These conclusions could be taken into consideration for the design criteria and the upgrade of the structures. In the second part of the thesis, new equations for the representation of the sediment transport in the IH-2VOF model were introduced in order to represent beach erosion while waves run-up and overtop the sea banks during storms. The new model allows to calculate sediment fluxes in the water column together with the sediment concentration. Moreover it is possible to model the bed profile evolution. Different tests were performed under low-intensity regular waves with an homogeneous layer of sand on the bottom of a channel in order to analyze the erosion-deposition patterns and verify the model results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis deals with numerical algorithms for fluid-structure interaction problems with application in blood flow modelling. It starts with a short introduction on the mathematical description of incompressible viscous flow with non-Newtonian viscosity and a moving linear viscoelastic structure. The mathematical model consists of the generalized Navier-Stokes equation used for the description of fluid flow and the generalized string model for structure movement. The arbitrary Lagrangian-Eulerian approach is used in order to take into account moving computational domain. A part of the thesis is devoted to the discussion on the non-Newtonian behaviour of shear-thinning fluids, which is in our case blood, and derivation of two non-Newtonian models frequently used in the blood flow modelling. Further we give a brief overview on recent fluid-structure interaction schemes with discussion about the difficulties arising in numerical modelling of blood flow. Our main contribution lies in numerical and experimental study of a new loosely-coupled partitioned scheme called the kinematic splitting fluid-structure interaction algorithm. We present stability analysis for a coupled problem of non-Newtonian shear-dependent fluids in moving domains with viscoelastic boundaries. Here, we assume both, the nonlinearity in convective as well is diffusive term. We analyse the convergence of proposed numerical scheme for a simplified fluid model of the Oseen type. Moreover, we present series of experiments including numerical error analysis, comparison of hemodynamic parameters for the Newtonian and non-Newtonian fluids and comparison of several physiologically relevant computational geometries in terms of wall displacement and wall shear stress. Numerical analysis and extensive experimental study for several standard geometries confirm reliability and accuracy of the proposed kinematic splitting scheme in order to approximate fluid-structure interaction problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart diseases are the leading cause of death worldwide, both for men and women. However, the ionic mechanisms underlying many cardiac arrhythmias and genetic disorders are not completely understood, thus leading to a limited efficacy of the current available therapies and leaving many open questions for cardiac electrophysiologists. On the other hand, experimental data availability is still a great issue in this field: most of the experiments are performed in vitro and/or using animal models (e.g. rabbit, dog and mouse), even when the final aim is to better understand the electrical behaviour of in vivo human heart either in physiological or pathological conditions. Computational modelling constitutes a primary tool in cardiac electrophysiology: in silico simulations, based on the available experimental data, may help to understand the electrical properties of the heart and the ionic mechanisms underlying a specific phenomenon. Once validated, mathematical models can be used for making predictions and testing hypotheses, thus suggesting potential therapeutic targets. This PhD thesis aims to apply computational cardiac modelling of human single cell action potential (AP) to three clinical scenarios, in order to gain new insights into the ionic mechanisms involved in the electrophysiological changes observed in vitro and/or in vivo. The first context is blood electrolyte variations, which may occur in patients due to different pathologies and/or therapies. In particular, we focused on extracellular Ca2+ and its effect on the AP duration (APD). The second context is haemodialysis (HD) therapy: in addition to blood electrolyte variations, patients undergo a lot of other different changes during HD, e.g. heart rate, cell volume, pH, and sympatho-vagal balance. The third context is human hypertrophic cardiomyopathy (HCM), a genetic disorder characterised by an increased arrhythmic risk, and still lacking a specific pharmacological treatment.