778 resultados para labour process theory
Resumo:
In the first part of this thesis (Chapters I and II), the synthesis, characterization, reactivity and photophysics of per(difluoroborated) tetrakis(pyrophosphito)diplatinate(II) (Pt(POPBF2)) are discussed. Pt(POP-BF2) was obtained by reaction of [Pt2(POP)4]4- with neat boron trifluoride diethyl etherate (BF3·Et2O). While Pt(POP-BF2) and [Pt2(POP)4]4- have similar structures and absorption spectra, they differ in significant ways. Firstly, as discussed in Chapter I, the former is less susceptible to oxidation, as evidenced by the reversibility of its oxidation by I2. Secondly, while the first excited triplet states (T1) of both Pt(POP-BF2) and [Pt2(POP)4]4- exhibit long lifetimes (ca. 0.01 ms at room temperature) and substantial zero-field splitting (40 cm-1), Pt(POP-BF2) also has a remarkably long-lived (1.6 ns at room temperature) singlet excited state (S1), indicating slow intersystem crossing (ISC). Fluorescence lifetime and quantum yield (QY) of Pt(POP-BF2) were measured over a range of temperatures, providing insight into the slow ISC process. The remarkable spectroscopic and photophysical properties of Pt(POP-BF2), both in solution and as a microcrystalline powder, form the theme of Chapter II.
In the second part of the thesis (Chapters III and IV), the electrochemical reduction of CO2 to CO by [(L)Mn(CO)3]- catalysts is investigated using density functional theory (DFT). As discussed in Chapter III, the turnover frequency (TOF)-limiting step is the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]0/- (bpy = bipyridine) by trifluoroethanol (TFEH) to form [(bpy)Mn(CO)4]+/0. Because the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]- is faster, maximum TOF (TOFmax) is achieved at potentials sufficient to completely reduce [(bpy)Mn(CO)3(CO2H)]0 to [(bpy)Mn(CO)3(CO2H)]-. Substitution of bipyridine with bipyrimidine reduces the overpotential needed, but at the expense of TOFmax. In Chapter IV, the decoration of the bipyrimidine ligand with a pendant alcohol is discussed as a strategy to increase CO2 reduction activity. Our calculations predict that the pendant alcohol acts in concert with an external TFEH molecule, the latter acidifying the former, resulting in a ~ 80,000-fold improvement in the rate of TOF-limiting dehydroxylation of [(L)Mn(CO)3(CO2H)]-.
An interesting strategy for the co-upgrading of light olefins and alkanes into heavier alkanes is the subject of Appendix B. The proposed scheme involves dimerization of the light olefin, operating in tandem with transfer hydrogenation between the olefin dimer and the light alkane. The work presented therein involved a Ta olefin dimerization catalyst and a silica-supported Ir transfer hydrogenation catalyst. Olefin dimer was formed under reaction conditions; however, this did not undergo transfer hydrogenation with the light alkane. A significant challenge is that the Ta catalyst selectively produces highly branched dimers, which are unable to undergo transfer hydrogenation.
Resumo:
An attempt is made to provide a theoretical explanation of the effect of the positive column on the voltage-current characteristic of a glow or an arc discharge. Such theories have been developed before, and all are based on balancing the production and loss of charged particles and accounting for the energy supplied to the plasma by the applied electric field. Differences among the theories arise from the approximations and omissions made in selecting processes that affect the particle and energy balances. This work is primarily concerned with the deviation from the ambipolar description of the positive column caused by space charge, electron-ion volume recombination, and temperature inhomogeneities.
The presentation is divided into three parts, the first of which involved the derivation of the final macroscopic equations from kinetic theory. The final equations are obtained by taking the first three moments of the Boltzmann equation for each of the three species in the plasma. Although the method used and the equations obtained are not novel, the derivation is carried out in detail in order to appraise the validity of numerous approximations and to justify the use of data from other sources. The equations are applied to a molecular hydrogen discharge contained between parallel walls. The applied electric field is parallel to the walls, and the dependent variables—electron and ion flux to the walls, electron and ion densities, transverse electric field, and gas temperature—vary only in the direction perpendicular to the walls. The mathematical description is given by a sixth-order nonlinear two-point boundary value problem which contains the applied field as a parameter. The amount of neutral gas and its temperature at the walls are held fixed, and the relation between the applied field and the electron density at the center of the discharge is obtained in the process of solving the problem. This relation corresponds to that between current and voltage and is used to interpret the effect of space charge, recombination, and temperature inhomogeneities on the voltage-current characteristic of the discharge.
The complete solution of the equations is impractical both numerically and analytically, and in Part II the gas temperature is assumed uniform so as to focus on the combined effects of space charge and recombination. The terms representing these effects are treated as perturbations to equations that would otherwise describe the ambipolar situation. However, the term representing space charge is not negligible in a thin boundary layer or sheath near the walls, and consequently the perturbation problem is singular. Separate solutions must be obtained in the sheath and in the main region of the discharge, and the relation between the electron density and the applied field is not determined until these solutions are matched.
In Part III the electron and ion densities are assumed equal, and the complicated space-charge calculation is thereby replaced by the ambipolar description. Recombination and temperature inhomogeneities are both important at high values of the electron density. However, the formulation of the problem permits a comparison of the relative effects, and temperature inhomogeneities are shown to be important at lower values of the electron density than recombination. The equations are solved by a direct numerical integration and by treating the term representing temperature inhomogeneities as a perturbation.
The conclusions reached in the study are primarily concerned with the association of the relation between electron density and axial field with the voltage-current characteristic. It is known that the effect of space charge can account for the subnormal glow discharge and that the normal glow corresponds to a close approach to an ambipolar situation. The effect of temperature inhomogeneities helps explain the decreasing characteristic of the arc, and the effect of recombination is not expected to appear except at very high electron densities.
Resumo:
The problem of the continuation to complex values of the angular momentum of the partial wave amplitude is examined for the simplest production process, that of two particles → three particles. The presence of so-called "anomalous singularities" complicates the procedure followed relative to that used for quasi two-body scattering amplitudes. The anomalous singularities are shown to lead to exchange degenerate amplitudes with possible poles in much the same way as "normal" singularities lead to the usual signatured amplitudes. The resulting exchange-degenerate trajectories would also be expected to occur in two-body amplitudes.
The representation of the production amplitude in terms of the singularities of the partial wave amplitude is then developed and applied to the high energy region, with attention being paid to the emergence of "double Regge" terms. Certain new results are obtained for the behavior of the amplitude at zero momentum transfer, and some predictions of polarization and minima in momentum transfer distributions are made. A calculation of the polarization of the ρo meson in the reaction π - p → π - ρop at high energy with small momentum transfer to the proton is compared with data taken at 25 Gev by W. D. Walker and collaborators. The result is favorable, although limited by the statistics of the available data.
Resumo:
The propagation of waves in an extended, irregular medium is studied under the "quasi-optics" and the "Markov random process" approximations. Under these assumptions, a Fokker-Planck equation satisfied by the characteristic functional of the random wave field is derived. A complete set of the moment equations with different transverse coordinates and different wavenumbers is then obtained from the characteristic functional. The derivation does not require Gaussian statistics of the random medium and the result can be applied to the time-dependent problem. We then solve the moment equations for the phase correlation function, angular broadening, temporal pulse smearing, intensity correlation function, and the probability distribution of the random waves. The necessary and sufficient conditions for strong scintillation are also given.
We also consider the problem of diffraction of waves by a random, phase-changing screen. The intensity correlation function is solved in the whole Fresnel diffraction region and the temporal pulse broadening function is derived rigorously from the wave equation.
The method of smooth perturbations is applied to interplanetary scintillations. We formulate and calculate the effects of the solar-wind velocity fluctuations on the observed intensity power spectrum and on the ratio of the observed "pattern" velocity and the true velocity of the solar wind in the three-dimensional spherical model. The r.m.s. solar-wind velocity fluctuations are found to be ~200 km/sec in the region about 20 solar radii from the Sun.
We then interpret the observed interstellar scintillation data using the theories derived under the Markov approximation, which are also valid for the strong scintillation. We find that the Kolmogorov power-law spectrum with an outer scale of 10 to 100 pc fits the scintillation data and that the ambient averaged electron density in the interstellar medium is about 0.025 cm-3. It is also found that there exists a region of strong electron density fluctuation with thickness ~10 pc and mean electron density ~7 cm-3 between the PSR 0833-45 pulsar and the earth.
Resumo:
Two topics in plane strain perfect plasticity are studied using the method of characteristics. The first is the steady-state indentation of an infinite medium by either a rigid wedge having a triangular cross section or a smooth plate inclined to the direction of motion. Solutions are exact and results include deformation patterns and forces of resistance; the latter are also applicable for the case of incipient failure. Experiments on sharp wedges in clay, where forces and deformations are recorded, showed a good agreement with the mechanism of cutting assumed by the theory; on the other hand the indentation process for blunt wedges transforms into that of compression with a rigid part of clay moving with the wedge. Finite element solutions, for a bilinear material model, were obtained to establish a correspondence between the response of the plane strain wedge and its axi-symmetric counterpart, the cone. Results of the study afford a better understanding of the process of indentation of soils by penetrometers and piles as well as the mechanism of failure of deep foundations (piles and anchor plates).
The second topic concerns the plane strain steady-state free rolling of a rigid roller on clays. The problem is solved approximately for small loads by getting the exact solution of two problems that encompass the one of interest; the first is a steady-state with a geometry that approximates the one of the roller and the second is an instantaneous solution of the rolling process but is not a steady-state. Deformations and rolling resistance are derived. When compared with existing empirical formulae the latter was found to agree closely.
Resumo:
Part 1. Many interesting visual and mechanical phenomena occur in the critical region of fluids, both for the gas-liquid and liquid-liquid transitions. The precise thermodynamic and transport behavior here has some broad consequences for the molecular theory of liquids. Previous studies in this laboratory on a liquid-liquid critical mixture via ultrasonics supported a basically classical analysis of fluid behavior by M. Fixman (e. g., the free energy is assumed analytic in intensive variables in the thermodynamics)--at least when the fluid is not too close to critical. A breakdown in classical concepts is evidenced close to critical, in some well-defined ways. We have studied herein a liquid-liquid critical system of complementary nature (possessing a lower critical mixing or consolute temperature) to all previous mixtures, to look for new qualitative critical behavior. We did not find such new behavior in the ultrasonic absorption ascribable to the critical fluctuations, but we did find extra absorption due to chemical processes (yet these are related to the mixing behavior generating the lower consolute point). We rederived, corrected, and extended Fixman's analysis to interpret our experimental results in these more complex circumstances. The entire account of theory and experiment is prefaced by an extensive introduction recounting the general status of liquid state theory. The introduction provides a context for our present work, and also points out problems deserving attention. Interest in these problems was stimulated by this work but also by work in Part 3.
Part 2. Among variational theories of electronic structure, the Hartree-Fock theory has proved particularly valuable for a practical understanding of such properties as chemical binding, electric multipole moments, and X-ray scattering intensity. It also provides the most tractable method of calculating first-order properties under external or internal one-electron perturbations, either developed explicitly in orders of perturbation theory or in the fully self-consistent method. The accuracy and consistency of first-order properties are poorer than those of zero-order properties, but this is most often due to the use of explicit approximations in solving the perturbed equations, or to inadequacy of the variational basis in size or composition. We have calculated the electric polarizabilities of H2, He, Li, Be, LiH, and N2 by Hartree-Fock theory, using exact perturbation theory or the fully self-consistent method, as dictated by convenience. By careful studies on total basis set composition, we obtained good approximations to limiting Hartree-Fock values of polarizabilities with bases of reasonable size. The values for all species, and for each direction in the molecular cases, are within 8% of experiment, or of best theoretical values in the absence of the former. Our results support the use of unadorned Hartree-Pock theory for static polarizabilities needed in interpreting electron-molecule scattering data, collision-induced light scattering experiments, and other phenomena involving experimentally inaccessible polarizabilities.
Part 3. Numerical integration of the close-coupled scattering equations has been carried out to obtain vibrational transition probabilities for some models of the electronically adiabatic H2-H2 collision. All the models use a Lennard-Jones interaction potential between nearest atoms in the collision partners. We have analyzed the results for some insight into the vibrational excitation process in its dependence on the energy of collision, the nature of the vibrational binding potential, and other factors. We conclude also that replacement of earlier, simpler models of the interaction potential by the Lennard-Jones form adds very little realism for all the complication it introduces. A brief introduction precedes the presentation of our work and places it in the context of attempts to understand the collisional activation process in chemical reactions as well as some other chemical dynamics.
Resumo:
The role of life-history theory in population and evolutionary analyses is outlined. In both cases general life histories can be analysed, but simpler life histories need fewer parameters for their description. The simplest case, of semelparous (breed-once-then-die) organisms, needs only three parameters: somatic growth rate, mortality rate and fecundity. This case is analysed in detail. If fecundity is fixed, population growth rate can be calculated direct from mortality rate and somatic growth rate, and isoclines on which population growth rate is constant can be drawn in a ”state space” with axes for mortality rate and somatic growth rate. In this space density-dependence is likely to result in a population trajectory from low density, when mortality rate is low and somatic growth rate is high and the population increases (positive population growth rate) to high density, after which the process reverses to return to low density. Possible effects of pollution on this system are discussed. The state-space approach allows direct population analysis of the twin effects of pollution and density on population growth rate. Evolutionary analysis uses related methods to identify likely evolutionary outcomes when an organism's genetic options are subject to trade-offs. The trade-off considered here is between somatic growth rate and mortality rate. Such a trade-off could arise because of an energy allocation trade-off if resources spent on personal defence (reducing mortality rate) are not available for somatic growth rate. The evolutionary implications of pollution acting on such a trade-off are outlined.
Resumo:
Este trabalho se propõe a uma releitura da atual concepção do Direito Processual do Trabalho, seus institutos, princípios e regras. A partir da constatação da autonomia do processo do trabalho e da inaptidão de seus mecanismos para a realização dos direitos materiais subjacentes, passam a ser diagnosticados fatores que o distanciam dos valores constitucionais e das garantias processuais fundamentais reconhecidas nos textos supranacionais, para a construção de principiologia própria e coerente com a Teoria Geral do Processo. Destacadas as seis garantias processuais fundamentais, quais sejam (i) tribunal competente; (ii) acesso à justiça; (iii) órgão julgador imparcial; (iv) ampla possibilidade de participação no processo; (v) prazo razoável e (vi) efetividade da decisão, cada uma passa a ser apresentada inicialmente sob uma ótica abstrata e geral, para, em seguida, serem considerados os pontos em que se chocam com as práticas processuais trabalhistas. Sobre tais premissas são desenvolvidas teses em prol da construção de um justo processo do trabalho.
Resumo:
Objective: to analyze what nursing models and nursing assessment structures have been used in the implementation of the nursing process at the public and private centers in the health area Gipuzkoa (Basque Country). Method: a retrospective study was undertaken, based on the analysis of the nursing records used at the 158 centers studied. Results: the Henderson model, Carpenito's bifocal structure, Gordon's assessment structure and the Resident Assessment Instrument Nursing Home 2.0 have been used as nursing models and assessment structures to implement the nursing process. At some centers, the selected model or assessment structure has varied over time. Conclusion: Henderson's model has been the most used to implement the nursing process. Furthermore, the trend is observed to complement or replace Henderson's model by nursing assessment structures.
Resumo:
Many social relationships are a locus of struggle and suffering, either at the individual or interactional level. In this paper we explore why this is the case and suggest a modeling approach for dyadic interactions and the well-being of the participants. To this end we bring together an enactive approach to self with dynamical systems theory. Our basic assumption is that the quality of any social interaction or relationship fundamentally depends on the nature and constitution of the individuals engaged in these interactions. From an enactive perspective the self is conceived as an embodied and socially enacted autonomous system striving to maintain an identity. This striving involves a basic two-fold goal: the ability to exist as an individual in one's own right, while also being open to and affected by others. In terms of dynamical systems theory one can thus consider the individual self as a self-other organized system represented by a phase space spanned by the dimensions of distinction and participation, where attractors can be defined. Based on two everyday examples of dyadic relationship we propose a simple model of relationship dynamics, in which struggle or well-being in the dyad is analyzed in terms of movements of dyadic states that are in tension or in harmony with individually developed attractors. Our model predicts that relationships can be sustained when the dyad develops a new joint attractor toward which dyadic states tend to move, and well-being when this attractor is in balance with the individuals' attractors. We outline how this can inspire research on psychotherapy. The psychotherapy process itself provides a setting that supports clients to become aware how they fare with regards to the two-fold norm of distinction and participation and develop, through active engagement between client (or couple) and therapist, strategies to co-negotiate their self-organization.
Resumo:
In recent years, many industrial firms have been able to use roadmapping as an effective process methodology for projecting future technology and for coordinating technology planning and strategy. Firms potentially realize a number of benefits in deploying technology roadmapping (TRM) processes. Roadmaps provide information identifying which new technologies will meet firms' future product demands, allowing companies to leverage R&D investments through choosing appropriately out of a range of alternative technologies. Moreover, the roadmapping process serves an important communication tool helping to bring about consensus among roadmap developers, as well as between participants brought in during the development process, who may communicate their understanding of shared corporate goals through the roadmap. However, there are few conceptual accounts or case studies have made the argument that roadmapping processes may be used effectively as communication tools. This paper, therefore, seeks to elaborate a theoretical foundation for identifying the factors that must be considered in setting up a roadmap and for analyzing the effect of these factors on technology roadmap credibility as perceived by its users. Based on the survey results of 120 different R&D units, this empirical study found that firms need to explore further how they can enable frequent interactions between the TRM development team and TRM participants. A high level of interaction will improve the credibility of a TRM, with communication channels selected by the organization also positively affecting TRM credibility. © 2011 Elsevier Inc.
Resumo:
Introducing a "Cheaper, Faster, Better" product in today's highly competitive market is a challenging target. Therefore, for organizations to improve their performance in this area, they need to adopt methods such as process modelling, risk mitigation and lean principles. Recently, several industries and researchers focused efforts on transferring the value orientation concept to other phases of the Product Life Cycle (PLC) such as Product Development (PD), after its evident success in manufacturing. In PD, value maximization, which is the main objective of lean theory, has been of particular interest as an improvement concept that can enhance process flow logistics and support decision-making. This paper presents an ongoing study of the current understanding of value thinking in PD (VPD) with a focus on value dimensions and implementation benefits. The purpose of this study is to consider the current state of knowledge regarding value thinking in PD, and to propose a definition of value and a framework for analyzing value delivery. The framework-named the Value Cycle Map (VCM)- intends to facilitate understanding of value and its delivery mechanism in the context of the PLC. We suggest the VCM could be used as a foundation for future research in value modelling and measurement in PD.
Resumo:
Developing a theoretical description of turbulent plumes, the likes of which may be seen rising above industrial chimneys, is a daunting thought. Plumes are ubiquitous on a wide range of scales in both the natural and the man-made environments. Examples that immediately come to mind are the vapour plumes above industrial smoke stacks or the ash plumes forming particle-laden clouds above an erupting volcano. However, plumes also occur where they are less visually apparent, such as the rising stream of warmair above a domestic radiator, of oil from a subsea blowout or, at a larger scale, of air above the so-called urban heat island. In many instances, not only the plume itself is of interest but also its influence on the environment as a whole through the process of entrainment. Zeldovich (1937, The asymptotic laws of freely-ascending convective flows. Zh. Eksp. Teor. Fiz., 7, 1463-1465 (in Russian)), Batchelor (1954, Heat convection and buoyancy effects in fluids. Q. J. R. Meteor. Soc., 80, 339-358) and Morton et al. (1956, Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A, 234, 1-23) laid the foundations for classical plume theory, a theoretical description that is elegant in its simplicity and yet encapsulates the complex turbulent engulfment of ambient fluid into the plume. Testament to the insight and approach developed in these early models of plumes is that the essential theory remains unchanged and is widely applied today. We describe the foundations of plume theory and link the theoretical developments with the measurements made in experiments necessary to close these models before discussing some recent developments in plume theory, including an approach which generalizes results obtained separately for the Boussinesq and the non-Boussinesq plume cases. The theory presented - despite its simplicity - has been very successful at describing and explaining the behaviour of plumes across the wide range of scales they are observed. We present solutions to the coupled set of ordinary differential equations (the plume conservation equations) that Morton et al. (1956) derived from the Navier-Stokes equations which govern fluid motion. In order to describe and contrast the bulk behaviour of rising plumes from general area sources, we present closed-form solutions to the plume conservation equations that were achieved by solving for the variation with height of Morton's non-dimensional flux parameter Γ - this single flux parameter gives a unique representation of the behaviour of steady plumes and enables a characterization of the different types of plume. We discuss advantages of solutions in this form before describing extensions to plume theory and suggesting directions for new research. © 2010 The Author. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Resumo:
Technological investment is a key driver of innovation and the evaluation of technology potential is becoming increasingly important in this context. There is a range of approaches and tools for developing an understanding of the value of technology. However the process of communicating this potential to possible customers is not well documented in terms of theory and practice and falls outside the skill set of many technologists. This paper seeks to integrate the concepts of marketing and consultative selling into making business cases for new technologies. It describes an exploratory study which results in an outline process activity model for technologists wishing to build an effective business case for securing investment internally or when selling a technology externally. Following a review of literature, we suggest that there is potential to learn from market research and consultative sales techniques, and propose a five step process. The work has been industrially validated and forms a novel foundation for further development. © 2012 Elsevier Inc.