947 resultados para ion-neutral reactions, astrochemistry, interstellar medium


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work describes the development of a proton induced X-ray emission (PIXE) analysis system, especially designed and builtfor routine quantitative multi-elemental analysis of a large number of samples. The historical and general developments of the analytical technique and the physical processes involved are discussed. The philosophy, design, constructional details and evaluation of a versatile vacuum chamber, an automatic multi-sample changer, an on-demand beam pulsing system and ion beam current monitoring facility are described.The system calibration using thin standard foils of Si, P, S,Cl, K, Ca, Ti, V, Fe, Cu, Ga, Ge, Rb, Y and Mo was undertaken at proton beam energies of 1 to 3 MeV in steps of 0.5 MeV energy and compared with theoretical calculations. An independent calibration check using bovine liver Standard Reference Material was performed.  The minimum detectable limits have been experimentally determined at detector positions of 90° and 135° with respect to the incident beam for the above range of proton energies as a function of atomic number Z. The system has detection limits of typically 10- 7 to 10- 9 g for elements 14

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Amphipods living at the underside of Arctic sea ice are exposed to varying salinities due to freezing and melting, and have to cope with the resulting osmotic stress. Extracellular osmotic and ionic regulation at different salinities, thermal hysteresis, and supercooling points (SCPs) were studied in the under-ice amphipod Apherusa glacialis. The species is euryhaline, capable to regulate hyperosmotically at salinities S(R) < 30 g/kg, and osmoconforms at salinities S(R) >= 30 g/kg. Hyperosmotic regulation is an adaptation to thrive in low-salinity meltwater below the ice. Conforming to the ambient salinity during freezing reduces the risk of internal ice formation. Thermal hysteresis was not observed in the haemolymph of A. glacialis. The SCP of the species was -7.8 ± 1.9°C. Several ions were specifically downregulated ([Mg2+], [SO4]2-), or upregulated ([K+], [Ca2+]) in comparison to the medium. Strong downregulation of [Mg2+], is probably necessary to avoid an anaesthetic effect at low temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An elevated particle number concentration (PNC) observed during nucleation events could play a significant contribution to the total particle load and therefore to the air pollution in the urban environments. Therefore, a field measurement study of PNC was commenced to investigate the temporal and spatial variations of PNC within the urban airshed of Brisbane, Australia. PNC was monitored at urban (QUT), roadside (WOO) and semi-urban (ROC) areas around the Brisbane region during 2009. During the morning traffic peak period, the highest relative fraction of PNC reached about 5% at QUT and WOO on weekdays. PNC peaks were observed around noon, which correlated with the highest solar radiation levels at all three stations, thus suggesting that high PNC levels were likely to be associated with new particle formation caused by photochemical reactions. Wind rose plots showed relatively higher PNC for the NE direction, which was associated with industrial pollution, accounting for 12%, 9% and 14% of overall PNC at QUT, WOO and ROC, respectively. Although there was no significant correlation between PNC at each station, the variation of PNC was well correlated among three stations during regional nucleation events. In addition, PNC at ROC was significantly influenced by upwind urban pollution during the nucleation burst events, with the average enrichment factor of 15.4. This study provides an insight into the influence of regional nucleation events on PNC in the Brisbane region and it the first study to quantify the effect of urban pollution on semi-urban PNC through the nucleation events. © 2012 Author(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Neutral cluster and Air Ion Spectrometer (NAIS) was used to monitor the concentration of airborne ions on 258 full days between Nov 2011 and Dec 2012 in Brisbane, Australia. The air was sampled from outside a window on the sixth floor of a building close to the city centre, approximately 100 m away from a busy freeway. The NAIS detects all ions and charged particles smaller than 42 nm. It was operated in a 4 min measurement cycle, with ion data recorded at 10 s intervals over 2 min during each cycle. The data were analysed to derive the diurnal variation of small, large and total ion concentrations in the environment. We adapt the definition of Horrak et al (2000) and classify small ions as molecular clusters smaller than 1.6 nm and large ions as charged particles larger than this size...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spontaneous reaction between microrods of an organic semiconductor molecule, copper 7,7,8,8-tetracyanoquinodimethane (CuTCNQ) with [AuBr4]− ions in an aqueous environment is reported. The reaction is found to be redox in nature which proceeds via a complex galvanic replacement mechanism, wherein the surface of the CuTCNQ microrods is replaced with metallic gold nanoparticles. Unlike previous reactions reported in acetonitrile, the galvanic replacement reaction in aqueous solution proceeds via an entirely different reaction mechanism, wherein a cyclical reaction mechanism involving continuous regeneration of CuTCNQ consumed during the galvanic replacement reaction occurs in parallel with the galvanic replacement reaction. This results in the driving force of the galvanic replacement reaction in aqueous medium being largely dependent on the availability of [AuBr4]− ions during the reaction. Therefore, this study highlights the importance of the choice of an appropriate solvent during galvanic replacement reactions, which can significantly impact upon the reaction mechanism. The reaction progress with respect to different gold salt concentration was monitored using Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopy (XPS), as well as XRD and EDX analysis, and SEM imaging. The CuTCNQ/Au nanocomposites were also investigated for their potential photocatalytic properties, wherein the destruction of the organic dye, Congo red, in a simulated solar light environment was found to be largely dependent on the degree of gold nanoparticle surface coverage. The approach reported here opens up new possibilities of decorating metal–organic charge transfer complexes with a host of metals, leading to potentially novel applications in catalysis and sensing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Radiation-induced skin reaction (RISR) is a common side effect that affects the majority of cancer patients receiving radiation treatment. RISR is often characterised by swelling,redness, pigmentation, fibrosis, and ulceration, pain, warmth, burning, and itching of the skin. The aim of this systematic review was to assess the effects of interventions which aim to prevent or manage RISR in people with cancer. Methods We searched the following databases up to November 2012: Cochrane Skin Group Specialised Register, CENTRAL (2012, Issue 11), MEDLINE (from 1946), EMBASE (from 1974), PsycINFO (from 1806), CINAHL (from 1981) and LILACS (from 1982). Randomized controlled trials evaluating interventions for preventing or managing RISR in cancer patients were included. The primary outcomes were development of RISR, and levels of RISR and symptom severity. Secondary outcomes were time taken to develop erythema or dry desquamation; quality of life; time taken to heal, a number of skin reaction and symptom severity measures; cost, participant satisfaction; ease of use and adverse effects. Where appropriate, we pooled results of randomized controlled trials using mean differences (MD) or odd ratios (OR) with 95% confidence intervals (CI). Results Forty-seven studies were included in this review. These evaluated six types of interventions (oral systemic medications; skin care practices; steroidal topical therapies; non-steroidal topical therapies; dressings and other). Findings from two meta-analyses demonstrated significant benefits of oral Wobe-Mugos E for preventing RISR (OR 0.13 (95% CI 0.05 to 0.38)) and limiting the maximal level of RISR (MD −0.92 (95% CI −1.36 to −0.48)). Another meta-analysis reported that wearing deodorant does not influence the development of RISR (OR 0.80 (95% CI 0.47 to 1.37)). Conclusions Despite the high number of trials in this area, there is limited good, comparative research that provides definitive results suggesting the effectiveness of any single intervention for reducing RISR. More research is required to demonstrate the usefulness of a wide range of products that are being used for reducing RISR. Future efforts for reducing RISR severity should focus on promising interventions, such as Wobe-Mugos E and oral zinc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of the aromatic distonic peroxyl radical cations N-methyl pyridinium-4-peroxyl (PyrOO center dot+) and 4-(N,N,N-trimethyl ammonium)-phenyl peroxyl (AnOO center dot+), with symmetrical dialkyl alkynes 10?ac was studied in the gas phase by mass spectrometry. PyrOO center dot+ and AnOO center dot+ were produced through reaction of the respective distonic aryl radical cations Pyr center dot+ and An center dot+ with oxygen, O2. For the reaction of Pyr center dot+ with O2 an absolute rate coefficient of k1=7.1X10-12 cm3 molecule-1 s-1 and a collision efficiency of 1.2?% was determined at 298 K. The strongly electrophilic PyrOO center dot+ reacts with 3-hexyne and 4-octyne with absolute rate coefficients of khexyne=1.5X10-10 cm3 molecule-1 s-1 and koctyne=2.8X10-10 cm3 molecule-1 s-1, respectively, at 298 K. The reaction of both PyrOO center dot+ and AnOO center dot+ proceeds by radical addition to the alkyne, whereas propargylic hydrogen abstraction was observed as a very minor pathway only in the reactions involving PyrOO center dot+. A major reaction pathway of the vinyl radicals 11 formed upon PyrOO center dot+ addition to the alkynes involves gamma-fragmentation of the peroxy O?O bond and formation of PyrO center dot+. The PyrO center dot+ is rapidly trapped by intermolecular hydrogen abstraction, presumably from a propargylic methylene group in the alkyne. The reaction of the less electrophilic AnOO center dot+ with alkynes is considerably slower and resulted in formation of AnO center dot+ as the only charged product. These findings suggest that electrophilic aromatic peroxyl radicals act as oxygen atom donors, which can be used to generate alpha-oxo carbenes 13 (or isomeric species) from alkynes in a single step. Besides gamma-fragmentation, a number of competing unimolecular dissociative reactions also occur in vinyl radicals 11. The potential energy diagrams of these reactions were explored with density functional theory and ab initio methods, which enabled identification of the chemical structures of the most important products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reactions of distonic 4-(N, N, N-trimethylammonium)-2-methylphenyl and 5-(N, N, N-trimethylammonium)-2-methylphenyl radical cations (m/z 149) with O-2 are studied in the gas phase using ion-trap mass spectrometry. Photodissociation (PD) of halogenated precursors gives rise to the target distonic charge-tagged methylphenyl radical whereas collision-induced dissociation (CID) is found to produce unreactive radical ions. The PD generated distonic radicals, however, react rapidly with O-2 to form \[M + O2](center dot+) and \[M + O-2 - OH](center dot+) ions, detected at m/z 181 and m/z 164, respectively. Quantum chemical calculations using G3SX(MP3) and M06-2X theories are deployed to examine key decomposition pathways of the 5-(N, N, N-trimethylammonium)-2-methylphenylperoxyl radical and rationalise the observed product ions. The prevailing product mechanism involves a 1,5- H shift in the peroxyl radical forming a QOOH-type intermediate that subsequently eliminates (OH)-O-center dot to yield charge-tagged 2-quinone methide. Our study suggests that the analogous process should occur for the neutral methylphenyl + O-2 reaction, thus serving as a plausible source of (OH)-O-center dot radicals in combustion environments. Grants: ARC/DP0986738, ARC/DP130100862

Relevância:

30.00% 30.00%

Publicador:

Resumo:

alpha-Carboxylate radical anions are potential reactive intermediates in the free radical oxidation of biological molecules (e. g., fatty acids, peptides and proteins). We have synthesised well-defined alpha-carboxylate radical anions in the gas phase by UV laser photolysis of halogenated precursors in an ion-trap mass spectrometer. Reactions of isolated acetate ((center dot)CH(2)CO(2)) and 1-carboxylatobutyl (CH(3)CH(2)CH(2)(center dot)CHCO(2)(-)) radical anions with dioxygen yield carbonate (CO(3)(center dot-)) radical anions and this chemistry is shown to be a hallmark of oxidation in simple and alkyl-substituted cross-conjugated species. Previous solution phase studies have shown that C(alpha)-radicals in peptides, formed from free radical damage, combine with dioxygen to form peroxyl radicals that subsequently decompose into imine and keto acid products. Here, we demonstrate that a novel alternative pathway exists for two alpha-carboxylate C(alpha)-radical anions: the acetylglycinate radical anion (CH(3)C(O)NH(center dot)CHCO(2)(-)) and the model peptide radical anion, YGGFG(center dot-). Reaction of these radical anions with dioxygen results in concerted loss of carbon dioxide and hydroxyl radical. The reaction of the acetylglycinate radical anion with dioxygen reveals a two-stage process involving a slow, followed by a fast kinetic regime. Computational modelling suggests the reversible formation of the C(alpha) peroxyl radical facilitates proton transfer from the amide to the carboxylate group, a process reminiscent of, but distinctive from, classical proton-transfer catalysis. Interestingly, inclusion of this isomerization step in the RRKM/ME modelling of a G3SX level potential energy surface enables recapitulation of the experimentally observed two-stage kinetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenylperoxyl radical has long been accepted as a critical intermediate in the oxidation of benzene and an archetype for arylperoxyl radicals in combustion and atmospheric chemistry. Despite being central to many contemporary mechanisms underpinning these chemistries, reports of the direct detection or isolation of phenylperoxyl radicals are rare and there is little experimental evidence connecting this intermediate with expected product channels. We have prepared and isolated two charge-tagged phenyl radical models in the gas phase [i.e., 4-(N,N,N-trimethylammonium) phenyl radical cation and 4-carboxylatophenyl radical anion] and observed their reactions with dioxygen by ion-trap mass spectrometry. Measured reaction rates show good agreement with prior reports for the neutral system (k(2)[(Me3N+)C6H4 center dot + O-2] = 2.8 x 10(-11) cm(3) molecule(-1) s(-1), Phi = 4.9%; k(2)[(-O2C)C6H4 center dot + O-2] = 5.4 x 10(-1)1 cm(3) molecule(-1) s(-1), Phi = 9.2%) and the resulting mass spectra provide unequivocal evidence for the formation of phenylperoxyl radicals. Collisional activation of isolated phenylperoxyl radicals reveals unimolecular decomposition by three pathways: (i) loss of dioxygen to reform the initial phenyl radical; (ii) loss of atomic oxygen yielding a phenoxyl radical; and (iii) ejection of the formyl radical to give cyclopentadienone. Stable isotope labeling confirms these assignments. Quantum chemical calculations for both charge-tagged and neutral phenylperoxyl radicals confirm that loss of formyl radical is accessible both thermodynamically and entropically and competitive with direct loss of both hydrogen atom and carbon dioxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ion (C6CH2)(.-) is formed in the gas phase by the process -C=C-C=C-C=CH2OEt --> (C6CH2)(.-) + EtO., and charge stripping of the product radical anion yields the carbenoid neutral C6CH2; this can be either a singlet (the ground state), which is best represented as the carbene :C=C=C=C=C=C=CH2, or a triplet; the adiabatic electron affinity and the dipole moment of the carbenoid neutral are calculated to be 2.82 eV and 7.33 D respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutral C3O has been prepared by collision induced neutralisation of the precursor radical anion formed by the reaction C-=C-CO-OEt --> C3O-. +EtO. . The similar neutralisaaion reionisation (-NR+) and charge reversal (CR) spectra of C3O-. indicate that the potential surfaces of C3O and C3O+. show favourable vertical Franck-Condon overlap, This suggests that the bond connectivities of anion, neutral and cation C3O are the same. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-range cross-ring reactions are of minor importance in the collision-induced mass spectra (MS/MS) of [M - H]- ions of CH2OCO-C6H4-NHCOR systems: e.g. the loss of 'CD3CO2CH3' from CH3OCO-C6H4-(N) over bar COCD3. Major processes involve (i) losses of radicals to form stable radical anions, e.g. loss of a ring hydrogen atom and losses from the ester (CH3 ., CH3O . and . CO2CH3), (ii) losses of neutral molecules from the amide moiety [e.g. CO (R = H) and CH2CO (R = CH3), and proximity effects when the two substituents are ortho [e.g. loss of (CH3OD+CO2) from o-CH3OCO-C6H4 (N) over bar COCD3].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last few years have brought an increasing interest in the chemistry of rite interstellar and circumstellar environs. Many of the molecular species discovered in remote galactic regions have been dubbed 'non-terrestrial' because of their unique structures (Thaddeus et al, 1993). These findings have provided a challenge to chemists in many differing fields to attempt to generate these unusual species in the laboratory of particular recent interest have been the unsaturated hydrocarbon families, CnH and CnH2, which have been pursued by a number of diverse methodologies. A wine range of heterocumulenes, including CnO, HCnO, CnN, HCnN, CnS, HCnS, CnSi and HCnSi have also provided intriguing targets for laboratory experiments. Strictly the term cumulene refers to a class of compounds that possess a series of adjacent double bonds, with allene representing the simplest example (H2C=C=CH2). However for many of the non-terrestrial molecules presented here, the carbon chain cannot be described in terms of a single simple valence structure, and so we use the terms cumulene and heterocumulene in a more general sense: to describe molecular species that contain an unsaturated polycarbon chain. Mass spectrometry has proved an invaluable tool in the quest for interstellar cumulenes and heterocumulenes in the laboratory it has the ability in its many forms, to (i) generate charged analogs of these species in the gas phase, (ii) probe their connectivity, ion chemistry, and thermochemistry, and (iii) in some cases, elucidate the neutrals themselves. Here, we will discuss the progress of these studies to this time. (C) 1999 John Wiley & Sons, Inc.