868 resultados para integer linear programming


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Im Bereich sicherheitsrelevanter eingebetteter Systeme stellt sich der Designprozess von Anwendungen als sehr komplex dar. Entsprechend einer gegebenen Hardwarearchitektur lassen sich Steuergeräte aufrüsten, um alle bestehenden Prozesse und Signale pünktlich auszuführen. Die zeitlichen Anforderungen sind strikt und müssen in jeder periodischen Wiederkehr der Prozesse erfüllt sein, da die Sicherstellung der parallelen Ausführung von größter Bedeutung ist. Existierende Ansätze können schnell Designalternativen berechnen, aber sie gewährleisten nicht, dass die Kosten für die nötigen Hardwareänderungen minimal sind. Wir stellen einen Ansatz vor, der kostenminimale Lösungen für das Problem berechnet, die alle zeitlichen Bedingungen erfüllen. Unser Algorithmus verwendet Lineare Programmierung mit Spaltengenerierung, eingebettet in eine Baumstruktur, um untere und obere Schranken während des Optimierungsprozesses bereitzustellen. Die komplexen Randbedingungen zur Gewährleistung der periodischen Ausführung verlagern sich durch eine Zerlegung des Hauptproblems in unabhängige Unterprobleme, die als ganzzahlige lineare Programme formuliert sind. Sowohl die Analysen zur Prozessausführung als auch die Methoden zur Signalübertragung werden untersucht und linearisierte Darstellungen angegeben. Des Weiteren präsentieren wir eine neue Formulierung für die Ausführung mit fixierten Prioritäten, die zusätzlich Prozessantwortzeiten im schlimmsten anzunehmenden Fall berechnet, welche für Szenarien nötig sind, in denen zeitliche Bedingungen an Teilmengen von Prozessen und Signalen gegeben sind. Wir weisen die Anwendbarkeit unserer Methoden durch die Analyse von Instanzen nach, welche Prozessstrukturen aus realen Anwendungen enthalten. Unsere Ergebnisse zeigen, dass untere Schranken schnell berechnet werden können, um die Optimalität von heuristischen Lösungen zu beweisen. Wenn wir optimale Lösungen mit Antwortzeiten liefern, stellt sich unsere neue Formulierung in der Laufzeitanalyse vorteilhaft gegenüber anderen Ansätzen dar. Die besten Resultate werden mit einem hybriden Ansatz erzielt, der heuristische Startlösungen, eine Vorverarbeitung und eine heuristische mit einer kurzen nachfolgenden exakten Berechnungsphase verbindet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Khutoretsky dealt with the problem of maximising a linear utility function (MUF) over the set of short-term equilibria in a housing market by reducing it to a linear programming problem, and suggested a combinatorial algorithm for this problem. Two approaches to the market adjustment were considered: the funding of housing construction and the granting of housing allowances. In both cases, locally optimal regulatory measures can be developed using the corresponding dual prices. The optimal effects (with the regulation expenditures restricted by an amount K) can be found using specialised models based on MUF: a model M1 for choice of the optimum structure of investment in housing construction, and a model M2 for optimum distribution of housing allowances. The linear integer optimisation problems corresponding to these models are initially difficult but can be solved after slight modifications of the parameters. In particular, the necessary modification of K does not exceed the maximum construction cost of one dwelling (for M1) or the maximum size of one housing allowance (for M2). The result is particularly useful since slight modification of K is not essential in practice.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A patient classification system was developed integrating a patient acuity instrument with a computerized nursing distribution method based on a linear programming model. The system was designed for real-time measurement of patient acuity (workload) and allocation of nursing personnel to optimize the utilization of resources.^ The acuity instrument was a prototype tool with eight categories of patients defined by patient severity and nursing intensity parameters. From this tool, the demand for nursing care was defined in patient points with one point equal to one hour of RN time. Validity and reliability of the instrument was determined as follows: (1) Content validity by a panel of expert nurses; (2) predictive validity through a paired t-test analysis of preshift and postshift categorization of patients; (3) initial reliability by a one month pilot of the instrument in a practice setting; and (4) interrater reliability by the Kappa statistic.^ The nursing distribution system was a linear programming model using a branch and bound technique for obtaining integer solutions. The objective function was to minimize the total number of nursing personnel used by optimally assigning the staff to meet the acuity needs of the units. A penalty weight was used as a coefficient of the objective function variables to define priorities for allocation of staff.^ The demand constraints were requirements to meet the total acuity points needed for each unit and to have a minimum number of RNs on each unit. Supply constraints were: (1) total availability of each type of staff and the value of that staff member (value was determined relative to that type of staff's ability to perform the job function of an RN (i.e., value for eight hours RN = 8 points, LVN = 6 points); (2) number of personnel available for floating between units.^ The capability of the model to assign staff quantitatively and qualitatively equal to the manual method was established by a thirty day comparison. Sensitivity testing demonstrated appropriate adjustment of the optimal solution to changes in penalty coefficients in the objective function and to acuity totals in the demand constraints.^ Further investigation of the model documented: correct adjustment of assignments in response to staff value changes; and cost minimization by an addition of a dollar coefficient to the objective function. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En este trabajo se estudia la modelización y optimización de procesos industriales de separación mediante el empleo de mezclas de líquidos iónicos como disolventes. Los disolventes habitualmente empleados en procesos de absorción o extracción suelen ser componentes orgánicos muy volátiles y dañinos para la salud humana. Las innovadoras propiedades que presentan los líquidos iónicos, los convierten en alternativas adecuadas para solucionar estos problemas. La presión de vapor de estos compuestos es muy baja y apenas varía con la temperatura. Por tanto, estos compuestos apenas se evaporan incluso a temperaturas altas. Esto supone una gran ventaja en cuanto al empleo de estos compuestos como disolventes industriales ya que permite el reciclaje continuo del disolvente al final del proceso sin necesidad de introducir disolvente fresco debido a la evaporación del mismo. Además, al no evaporarse, estos compuestos no suponen un peligro para la salud humana por inhalación; al contrario que otros disolventes como el benceno. El único peligro para la salud que tienen estos compuestos es por tanto el de contacto directo o ingesta, aunque de hecho muchos Líquidos Iónicos son inocuos con lo cual no existe peligro para la salud ni siquiera a través de estas vías. Los procesos de separación estudiados en este trabajo, se rigen por la termodinámica de fases, concretamente el equilibrio líquido-vapor. Para la predicción de los equilibrios se ha optado por el empleo de modelos COSMO (COnductor-like Screening MOdel). Estos modelos tienen su origen en el empleo de la termodinámica de solvatación y en la mecánica cuántica. En el desarrollo de procesos y productos, químicos e ingenieros frecuentemente precisan de la realización de cálculos de predicción de equilibrios de fase. Previamente al desarrollo de los modelos COSMO, se usaban métodos de contribución de grupos como UNIFAC o modelos de coeficientes de actividad como NRTL.La desventaja de estos métodos, es que requieren parámetros de interacción binaria que únicamente pueden obtenerse mediante ajustes por regresión a partir de resultados experimentales. Debido a esto, estos métodos apenas tienen aplicabilidad para compuestos con grupos funcionales novedosos debido a que no se dispone de datos experimentales para llevar a cabo los ajustes por regresión correspondientes. Una alternativa a estos métodos, es el empleo de modelos de solvatación basados en la química cuántica para caracterizar las interacciones moleculares y tener en cuenta la no idealidad de la fase líquida. Los modelos COSMO, permiten la predicción de equilibrios sin la necesidad de ajustes por regresión a partir de resultados experimentales. Debido a la falta de resultados experimentales de equilibrios líquido-vapor de mezclas en las que se ven involucrados los líquidos iónicos, el empleo de modelos COSMO es una buena alternativa para la predicción de equilibrios de mezclas con este tipo de materiales. Los modelos COSMO emplean las distribuciones superficiales de carga polarizada (sigma profiles) de los compuestos involucrados en la mezcla estudiada para la predicción de los coeficientes de actividad de la misma, definiéndose el sigma profile de una molécula como la distribución de probabilidad de densidad de carga superficial de dicha molécula. Dos de estos modelos son COSMO-RS (Realistic Solvation) y COSMO-SAC (Segment Activity Coefficient). El modelo COSMO-RS fue la primera extensión de los modelos de solvatación basados en continuos dieléctricos a la termodinámica de fases líquidas mientras que el modelo COSMO-SAC es una variación de este modelo, tal y como se explicará posteriormente. Concretamente en este trabajo se ha empleado el modelo COSMO-SAC para el cálculo de los coeficientes de actividad de las mezclas estudiadas. Los sigma profiles de los líquidos iónicos se han obtenido mediante el empleo del software de química computacional Turbomole y el paquete químico-cuántico COSMOtherm. El software Turbomole permite optimizar la geometría de la molécula para hallar la configuración más estable mientras que el paquete COSMOtherm permite la obtención del perfil sigma del compuesto mediante el empleo de los datos proporcionados por Turbomole. Por otra parte, los sigma profiles del resto de componentes se han obtenido de la base de datos Virginia Tech-2005 Sigma Profile Database. Para la predicción del equilibrio a partir de los coeficientes de actividad se ha empleado la Ley de Raoult modificada. Se ha supuesto por tanto que la fracción de cada componente en el vapor es proporcional a la fracción del mismo componente en el líquido, dónde la constante de proporcionalidad es el coeficiente de actividad del componente en la mezcla multiplicado por la presión de vapor del componente y dividido por la presión del sistema. Las presiones de vapor de los componentes se han obtenido aplicando la Ley de Antoine. Esta ecuación describe la relación entre la temperatura y la presión de vapor y se deduce a partir de la ecuación de Clausius-Clapeyron. Todos estos datos se han empleado para la modelización de una separación flash usando el algoritmo de Rachford-Rice. El valor de este modelo reside en la deducción de una función que relaciona las constantes de equilibrio, composición total y fracción de vapor. Para llevar a cabo la implementación del modelado matemático descrito, se ha programado un código empleando el software MATLAB de análisis numérico. Para comprobar la fiabilidad del código programado, se compararon los resultados obtenidos en la predicción de equilibrios de mezclas mediante el código con los resultados obtenidos mediante el simulador ASPEN PLUS de procesos químicos. Debido a la falta de datos relativos a líquidos iónicos en la base de datos de ASPEN PLUS, se han introducido estos componentes como pseudocomponentes, de manera que se han introducido únicamente los datos necesarios de estos componentes para realizar las simulaciones. El modelo COSMO-SAC se encuentra implementado en ASPEN PLUS, de manera que introduciendo los sigma profiles, los volúmenes de la cavidad y las presiones de vapor de los líquidos iónicos, es posible predecir equilibrios líquido-vapor en los que se ven implicados este tipo de materiales. De esta manera pueden compararse los resultados obtenidos con ASPEN PLUS y como el código programado en MATLAB y comprobar la fiabilidad del mismo. El objetivo principal del presente Trabajo Fin de Máster es la optimización de mezclas multicomponente de líquidos iónicos para maximizar la eficiencia de procesos de separación y minimizar los costes de los mismos. La estructura de este problema es la de un problema de optimización no lineal con variables discretas y continuas, es decir, un problema de optimización MINLP (Mixed Integer Non-Linear Programming). Tal y como se verá posteriormente, el modelo matemático de este problema es no lineal. Por otra parte, las variables del mismo son tanto continuas como binarias. Las variables continuas se corresponden con las fracciones molares de los líquidos iónicos presentes en las mezclas y con el caudal de la mezcla de líquidos iónicos. Por otra parte, también se ha introducido un número de variables binarias igual al número de líquidos iónicos presentes en la mezcla. Cada una de estas variables multiplican a las fracciones molares de sus correspondientes líquidos iónicos, de manera que cuando dicha variable es igual a 1, el líquido se encuentra en la mezcla mientras que cuando dicha variable es igual a 0, el líquido iónico no se encuentra presente en dicha mezcla. El empleo de este tipo de variables obliga por tanto a emplear algoritmos para la resolución de problemas de optimización MINLP ya que si todas las variables fueran continuas, bastaría con el empleo de algoritmos para la resolución de problemas de optimización NLP (Non-Linear Programming). Se han probado por tanto diversos algoritmos presentes en el paquete OPTI Toolbox de MATLAB para comprobar cuál es el más adecuado para abordar este problema. Finalmente, una vez validado el código programado, se han optimizado diversas mezclas de líquidos iónicos para lograr la máxima recuperación de compuestos aromáticos en un proceso de absorción de mezclas orgánicas. También se ha usado este código para la minimización del coste correspondiente a la compra de los líquidos iónicos de la mezcla de disolventes empleada en la operación de absorción. En este caso ha sido necesaria la introducción de restricciones relativas a la recuperación de aromáticos en la fase líquida o a la pureza de la mezcla obtenida una vez separada la mezcla de líquidos iónicos. Se han modelizado los dos problemas descritos previamente (maximización de la recuperación de Benceno y minimización del coste de operación) empleando tanto únicamente variables continuas (correspondientes a las fracciones o cantidades molares de los líquidos iónicos) como variables continuas y binarias (correspondientes a cada uno de los líquidos iónicos implicados en las mezclas).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O objeto deste trabalho é a análise do aproveitamento múltiplo do reservatório de Barra Bonita, localizado na confluência entre os rios Piracicaba e Tietê, no estado de São Paulo e pertencente ao chamado sistema Tietê-Paraná. Será realizada a otimização da operação do reservatório, através de programação linear, com o objetivo de aumentar a geração de energia elétrica, através da maximização da vazão turbinada. Em seguida, a partir dos resultados da otimização da geração de energia, serão utilizadas técnicas de simulação computacional, para se obter índices de desempenho conhecidos como confiabilidade, resiliência e vulnerabilidade, além de outros fornecidos pelo próprio modelo de simulação a ser utilizado. Estes índices auxiliam a avaliação da freqüência, magnitude e duração dos possíveis conflitos existentes. Serão analisados os possíveis conflitos entre a navegação, o armazenamento no reservatório, a geração de energia e a ocorrência de enchentes na cidade de Barra Bonita, localizada a jusante da barragem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Our main goal is to compute or estimate the calmness modulus of the argmin mapping of linear semi-infinite optimization problems under canonical perturbations, i.e., perturbations of the objective function together with continuous perturbations of the right-hand side of the constraint system (with respect to an index ranging in a compact Hausdorff space). Specifically, we provide a lower bound on the calmness modulus for semi-infinite programs with unique optimal solution which turns out to be the exact modulus when the problem is finitely constrained. The relationship between the calmness of the argmin mapping and the same property for the (sub)level set mapping (with respect to the objective function), for semi-infinite programs and without requiring the uniqueness of the nominal solution, is explored, too, providing an upper bound on the calmness modulus of the argmin mapping. When confined to finitely constrained problems, we also provide a computable upper bound as it only relies on the nominal data and parameters, not involving elements in a neighborhood. Illustrative examples are provided.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multiobjective Generalized Disjunctive Programming (MO-GDP) optimization has been used for the synthesis of an important industrial process, isobutane alkylation. The two objective functions to be simultaneously optimized are the environmental impact, determined by means of LCA (Life Cycle Assessment), and the economic potential of the process. The main reason for including the minimization of the environmental impact in the optimization process is the widespread environmental concern by the general public. For the resolution of the problem we employed a hybrid simulation- optimization methodology, i.e., the superstructure of the process was developed directly in a chemical process simulator connected to a state of the art optimizer. The model was formulated as a GDP and solved using a logic algorithm that avoids the reformulation as MINLP -Mixed Integer Non Linear Programming-. Our research gave us Pareto curves compounded by three different configurations where the LCA has been assessed by two different parameters: global warming potential and ecoindicator-99.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we deal with parameterized linear inequality systems in the n-dimensional Euclidean space, whose coefficients depend continuosly on an index ranging in a compact Hausdorff space. The paper is developed in two different parametric settings: the one of only right-hand-side perturbations of the linear system, and that in which both sides of the system can be perturbed. Appealing to the backgrounds on the calmness property, and exploiting the specifics of the current linear structure, we derive different characterizations of the calmness of the feasible set mapping, and provide an operative expresion for the calmness modulus when confined to finite systems. In the paper, the role played by the Abadie constraint qualification in relation to calmness is clarified, and illustrated by different examples. We point out that this approach has the virtue of tackling the calmness property exclusively in terms of the system’s data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we examine multi-objective linear programming problems in the face of data uncertainty both in the objective function and the constraints. First, we derive a formula for the radius of robust feasibility guaranteeing constraint feasibility for all possible scenarios within a specified uncertainty set under affine data parametrization. We then present numerically tractable optimality conditions for minmax robust weakly efficient solutions, i.e., the weakly efficient solutions of the robust counterpart. We also consider highly robust weakly efficient solutions, i.e., robust feasible solutions which are weakly efficient for any possible instance of the objective matrix within a specified uncertainty set, providing lower bounds for the radius of highly robust efficiency guaranteeing the existence of this type of solutions under affine and rank-1 objective data uncertainty. Finally, we provide numerically tractable optimality conditions for highly robust weakly efficient solutions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bibliography: leaves [87]-[88]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper formulates several mathematical models for determining the optimal sequence of component placements and assignment of component types to feeders simultaneously or the integrated scheduling problem for a type of surface mount technology placement machines, called the sequential pick-andplace (PAP) machine. A PAP machine has multiple stationary feeders storing components, a stationary working table holding a printed circuit board (PCB), and a movable placement head to pick up components from feeders and place them to a board. The objective of integrated problem is to minimize the total distance traveled by the placement head. Two integer nonlinear programming models are formulated first. Then, each of them is equivalently converted into an integer linear type. The models for the integrated problem are verified by two commercial packages. In addition, a hybrid genetic algorithm previously developed by the authors is adopted to solve the models. The algorithm not only generates the optimal solutions quickly for small-sized problems, but also outperforms the genetic algorithms developed by other researchers in terms of total traveling distance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The generalised transportation problem (GTP) is an extension of the linear Hitchcock transportation problem. However, it does not have the unimodularity property, which means the linear programming solution (like the simplex method) cannot guarantee to be integer. This is a major difference between the GTP and the Hitchcock transportation problem. Although some special algorithms, such as the generalised stepping-stone method, have been developed, but they are based on the linear programming model and the integer solution requirement of the GTP is relaxed. This paper proposes a genetic algorithm (GA) to solve the GTP and a numerical example is presented to show the algorithm and its efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper formulates a logistics distribution problem as the multi-depot travelling salesman problem (MDTSP). The decision makers not only have to determine the travelling sequence of the salesman for delivering finished products from a warehouse or depot to a customer, but also need to determine which depot stores which type of products so that the total travelling distance is minimised. The MDTSP is similar to the combination of the travelling salesman and quadratic assignment problems. In this paper, the two individual hard problems or models are formulated first. Then, the problems are integrated together, that is, the MDTSP. The MDTSP is constructed as both integer nonlinear and linear programming models. After formulating the models, we verify the integrated models using commercial packages, and most importantly, investigate whether an iterative approach, that is, solving the individual models repeatedly, can generate an optimal solution to the MDTSP. Copyright © 2006 Inderscience Enterprises Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Linear Programming (LP) is a powerful decision making tool extensively used in various economic and engineering activities. In the early stages the success of LP was mainly due to the efficiency of the simplex method. After the appearance of Karmarkar's paper, the focus of most research was shifted to the field of interior point methods. The present work is concerned with investigating and efficiently implementing the latest techniques in this field taking sparsity into account. The performance of these implementations on different classes of LP problems is reported here. The preconditional conjugate gradient method is one of the most powerful tools for the solution of the least square problem, present in every iteration of all interior point methods. The effect of using different preconditioners on a range of problems with various condition numbers is presented. Decomposition algorithms has been one of the main fields of research in linear programming over the last few years. After reviewing the latest decomposition techniques, three promising methods were chosen the implemented. Sparsity is again a consideration and suggestions have been included to allow improvements when solving problems with these methods. Finally, experimental results on randomly generated data are reported and compared with an interior point method. The efficient implementation of the decomposition methods considered in this study requires the solution of quadratic subproblems. A review of recent work on algorithms for convex quadratic was performed. The most promising algorithms are discussed and implemented taking sparsity into account. The related performance of these algorithms on randomly generated separable and non-separable problems is also reported.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AMS subject classification: 90C05, 90A14.