927 resultados para genome assembly
Resumo:
Human genetics has progressed at an unprecedented pace during the past 10 years. DNA microarrays currently allow screening of the entire human genome with high level of coverage and we are now entering the era of high-throughput sequencing. These remarkable technical advances are influencing the way medical research is conducted and have boosted our understanding of the structure of the human genome as well as of disease biology. In this context, it is crucial for clinicians to understand the main concepts and limitations of modern genetics. This review will describe key concepts in genetics, including the different types of genetic markers in the human genome, review current methods to detect DNA variation, describe major online public databases in genetics, explain key concepts in statistical genetics and finally present commonly used study designs in clinical and epidemiological research. This review will therefore concentrate on human genetic variation analysis.
Resumo:
We used stepwise photochemical cross-linking for specifically assembling soluble and covalent complexes made of a T-cell antigen receptor (TCR) and a class I molecule of the major histocompatibility complex (MHC) bound to an antigenic peptide. For that purpose, we have produced in myeloma cells a single-chain Fv construct of a TCR specific for a photoreactive H-2Kd-peptide complex. Photochemical cross-linking of this TCR single-chain Fv with a soluble form of the photoreactive H-2Kd-peptide ligand resulted in the formation of a ternary covalent complex. We have characterized the soluble ternary complex and showed that it reacted with antibodies specific for epitopes located either on the native TCR or on the Kd molecules. By preventing the fast dissociation kinetics observed with most T cell receptors, this approach provides a means of preparing soluble TCR-peptide-MHC complexes on large-scale levels.
Resumo:
Most approaches aiming at finding genes involved in adaptive events have focused on the detection of outlier loci, which resulted in the discovery of individually "significant" genes with strong effects. However, a collection of small effect mutations could have a large effect on a given biological pathway that includes many genes, and such a polygenic mode of adaptation has not been systematically investigated in humans. We propose here to evidence polygenic selection by detecting signals of adaptation at the pathway or gene set level instead of analyzing single independent genes. Using a gene-set enrichment test to identify genome-wide signals of adaptation among human populations, we find that most pathways globally enriched for signals of positive selection are either directly or indirectly involved in immune response. We also find evidence for long-distance genotypic linkage disequilibrium, suggesting functional epistatic interactions between members of the same pathway. Our results show that past interactions with pathogens have elicited widespread and coordinated genomic responses, and suggest that adaptation to pathogens can be considered as a primary example of polygenic selection.
Resumo:
Routine screening of lung transplant recipients and hospital patients for respiratory virus infections allowed to identify human rhinovirus (HRV) in the upper and lower respiratory tracts, including immunocompromised hosts chronically infected with the same strain over weeks or months. Phylogenetic analysis of 144 HRV-positive samples showed no apparent correlation between a given viral genotype or species and their ability to invade the lower respiratory tract or lead to protracted infection. By contrast, protracted infections were found almost exclusively in immunocompromised patients, thus suggesting that host factors rather than the virus genotype modulate disease outcome, in particular the immune response. Complete genome sequencing of five chronic cases to study rhinovirus genome adaptation showed that the calculated mutation frequency was in the range observed during acute human infections. Analysis of mutation hot spot regions between specimens collected at different times or in different body sites revealed that non-synonymous changes were mostly concentrated in the viral capsid genes VP1, VP2 and VP3, independent of the HRV type. In an immunosuppressed lung transplant recipient infected with the same HRV strain for more than two years, both classical and ultra-deep sequencing of samples collected at different time points in the upper and lower respiratory tracts showed that these virus populations were phylogenetically indistinguishable over the course of infection, except for the last month. Specific signatures were found in the last two lower respiratory tract populations, including changes in the 5'UTR polypyrimidine tract and the VP2 immunogenic site 2. These results highlight for the first time the ability of a given rhinovirus to evolve in the course of a natural infection in immunocompromised patients and complement data obtained from previous experimental inoculation studies in immunocompetent volunteers.
Resumo:
Estudi realitzat a partir d’una estada a la the Salk Institute, Estats Units, entre 2010 i 2012. L'estabilitat del genoma és essencial per a la supervivència de les cèl • lules mare, però, l'estabilitat del proteoma pot tenir un paper igualment important en la identitat de cèl • lules mare i la seva funció. La nostra hipòtesi és que les cèl • lules mare tenen la capacitat de proteostasis augmentada en comparació amb els seus homòlegs diferenciats i ens varem preguntar si l'activitat del proteasoma és diferent a les cèl • lules mare embrionàries humanes (hESCs). En particular, els nostres resultats mostren que les poblacions de cèl• lules mare presenten una activitat del proteasoma que es correlaciona amb majors nivells de la subunitat 19S del proteasoma PSMD11/RPN-6 i un corresponent augment del ensamblatge del 26S/30S proteasoma. L'expressió ectòpica de PSMD11 és suficient per augmentar l'activitat del proteasoma. Sorprenentment, varem trobar que la llarga vida del GLP-1 C. elegans mutant té també un augment dramàtic en l'activitat del proteasoma associat a nivells augmentats en l'expressió de RPN-6. El factor de transcripció DAF-16 és essencial per l'augment de la longevitat de GLP-1 i els cucs mutants que trobem DAF-16 necessari per a l'augment d'expressió de RPN-6 i, per tant, per l'activació de l'activitat del proteasoma en GLP-1 mutant animals. Una possibilitat interessant és que els gens que regulen la vida i la resistència a l'estrès en C. elegans poden també regular la funció hESCs de mamífer, cèl • lules que son considerades immortals. Aquests resultats ens van portar a la conclusió de que FOXO4, un factor de transcripció sensible a la insulina/IGF-1, regula l'activitat del proteasoma en hESCs, el que suggereix un paper per FOXO4 en la funció d’aquestes cèl • lules. En efecte, FOXO4 es necessari per a la diferenciació en llinatges neuronals de les hESCs. Els nostres resultats estableixen una nova regulació de laproteostasis en hESCs que uneix la longevitat i la resistència a l'estrès en invertebrats amb la funció i identitat de les hESCs.
Resumo:
Estudi realitzat a partir d’una estada a la Institut J.W. Jenkinson Laboratory for Evolution and Development of the University of Oxford, Regne Unit, entre 2010 i 2012. He estat membre del laboratori del Professor Peter W.H. Holland com a becari post-doctoral Beatriu de Pinós des de setembre de 2010 al setembre de 2012. El nostre projecte de recerca se centra en l'anàlisi genòmic comparatiu del Regne Animal, tot explorant el contingut dels genomes a través de totes les branques de l'arbre dels animals. Totes les referències a les meves publicacions durant aquest post-doc es poden trobar a http://about.me/jordi_paps. Crec que el nombre i la qualitat dels resultats del meu post-doc, un total de 8 publicacions incloent dos articles a la prestigiosa revista Nature, són prova de l'èxit d'aquest post-doc. Prof Peter W. H. Holland (Departament de Zoologia de la Universitat d'Oxford) i jo som coautors de tres articles de genòmica comparativa, resultats directes d'aquest projecte: 1) comparació de families gèniques entre vertebrats invertebrats (Briefings in Functional Genomics), 2) el genoma de l'ostra (publicat a la revista Nature), i 3) els genomes de 6 platihelmints paràsits (acceptat també a Nature). A més, tenim altres 2 treballs en preparació. Un d'ells analitza l'evolució, expressió i funció dels gens Hox al a la tènia Hymenolepis. El perfil fi d'aquests gens clau del desenvolupament esclareix els canvis d'estil de vida dels organismes. A més, durant aquest últim post-doc he participat en diverses col•laboracions, incloent anàlisi de gens d'envelliment a cucs plans, un estudi sobre la filogènia del grup Gastrotricha, una revisió de l'evolució phylum Platyhelminthes, així com un capítol d'un llibre sobre l'evolució dels animals bilaterals. Finalment, gràcies a la beca Beatriu de Pinós, el Prof. Peter W.H. Holland m'ha convidat a formar part del seu equip com un investigador post-doctoral en el seu projecte ERC Advance actual sobre duplicacions genòmiques.
Resumo:
Cancer/Testis (CT) genes, normally expressed in germ line cells but also activated in a wide range of cancer types, often encode antigens that are immunogenic in cancer patients, and present potential for use as biomarkers and targets for immunotherapy. Using multiple in silico gene expression analysis technologies, including twice the number of expressed sequence tags used in previous studies, we have performed a comprehensive genome-wide survey of expression for a set of 153 previously described CT genes in normal and cancer expression libraries. We find that although they are generally highly expressed in testis, these genes exhibit heterogeneous gene expression profiles, allowing their classification into testis-restricted (39), testis/brain-restricted (14), and a testis-selective (85) group of genes that show additional expression in somatic tissues. The chromosomal distribution of these genes confirmed the previously observed dominance of X chromosome location, with CT-X genes being significantly more testis-restricted than non-X CT. Applying this core classification in a genome-wide survey we identified >30 CT candidate genes; 3 of them, PEPP-2, OTOA, and AKAP4, were confirmed as testis-restricted or testis-selective using RT-PCR, with variable expression frequencies observed in a panel of cancer cell lines. Our classification provides an objective ranking for potential CT genes, which is useful in guiding further identification and characterization of these potentially important diagnostic and therapeutic targets.
Resumo:
OBJECTIVES: Co-morbidity between depression and anxiety disorders is common. In this study we define a quantitative measure of anxiety by summating four anxiety items from the SCAN interview in a large collection of major depression (MDD) cases to identify genes contributing to this complex phenotype. METHODS: A total of 1522 MDD cases dichotomised according to those with at least one anxiety item scored (n = 1080) and those without anxiety (n = 442) were analysed, and also compared to 1588 healthy controls at a genome-wide level, to identify genes that may contribute to anxiety in MDD. RESULTS: For the quantitative trait, suggestive evidence of association was detected for two SNPs, and for the dichotomous anxiety present/absent ratings for three SNPs at genome-wide level. In the genome-wide analysis of MDD cases with co-morbid anxiety and healthy controls, two SNPs attained P values of < 5 × 10⁻⁶. Analysing candidate genes, P values ≤ 0.0005 were found with three SNPs for the quantitative trait and three SNPs for the dichotomous trait. CONCLUSIONS: This study provides an initial genome-wide assessment of possible genetic contribution to anxiety in MDD. Although suggestive evidence of association was found for several SNPs, our findings suggest that there are no common variants strongly associated with anxious depression.
Resumo:
Background: Cells have the ability to respond and adapt to environmental changes through activation of stress-activated protein kinases (SAPKs). Although p38 SAPK signalling is known to participate in the regulation of gene expression little is known on the molecular mechanisms used by this SAPK to regulate stress-responsive genes and the overall set of genes regulated by p38 in response to different stimuli.Results: Here, we report a whole genome expression analyses on mouse embryonic fibroblasts (MEFs) treated with three different p38 SAPK activating-stimuli, namely osmostress, the cytokine TNFα and the protein synthesis inhibitor anisomycin. We have found that the activation kinetics of p38α SAPK in response to these insults is different and also leads to a complex gene pattern response specific for a given stress with a restricted set of overlapping genes. In addition, we have analysed the contribution of p38α the major p38 family member present in MEFs, to the overall stress-induced transcriptional response by using both a chemical inhibitor (SB203580) and p38α deficient (p38α-/-) MEFs. We show here that p38 SAPK dependency ranged between 60% and 88% depending on the treatments and that there is a very good overlap between the inhibitor treatment and the ko cells. Furthermore, we have found that the dependency of SAPK varies depending on the time the cells are subjected to osmostress. Conclusions: Our genome-wide transcriptional analyses shows a selective response to specific stimuli and a restricted common response of up to 20% of the stress up-regulated early genes that involves an important set of transcription factors, which might be critical for either cell adaptation or preparation for continuous extra-cellular changes. Interestingly, up to 85% of the up-regulated genes are under the transcriptional control of p38 SAPK. Thus, activation of p38 SAPK is critical to elicit the early gene expression program required for cell adaptation to stress.
Resumo:
Background: Prolificacy is the most important trait influencing the reproductive efficiency of pig production systems. The low heritability and sex-limited expression of prolificacy have hindered to some extent the improvement of this trait through artificial selection. Moreover, the relative contributions of additive, dominant and epistatic QTL to the genetic variance of pig prolificacy remain to be defined. In this work, we have undertaken this issue by performing one-dimensional and bi-dimensional genome scans for number of piglets born alive (NBA) and total number of piglets born (TNB) in a three generation Iberian by Meishan F2 intercross. Results: The one-dimensional genome scan for NBA and TNB revealed the existence of two genome-wide highly significant QTL located on SSC13 (P < 0.001) and SSC17 (P < 0.01) with effects on both traits. This relative paucity of significant results contrasted very strongly with the wide array of highly significant epistatic QTL that emerged in the bi-dimensional genome-wide scan analysis. As much as 18 epistatic QTL were found for NBA (four at P < 0.01 and five at P < 0.05) and TNB (three at P < 0.01 and six at P < 0.05), respectively. These epistatic QTL were distributed in multiple genomic regions, which covered 13 of the 18 pig autosomes, and they had small individual effects that ranged between 3 to 4% of the phenotypic variance. Different patterns of interactions (a × a, a × d, d × a and d × d) were found amongst the epistatic QTL pairs identified in the current work.Conclusions: The complex inheritance of prolificacy traits in pigs has been evidenced by identifying multiple additive (SSC13 and SSC17), dominant and epistatic QTL in an Iberian × Meishan F2 intercross. Our results demonstrate that a significant fraction of the phenotypic variance of swine prolificacy traits can be attributed to first-order gene-by-gene interactions emphasizing that the phenotypic effects of alleles might be strongly modulated by the genetic background where they segregate.
Resumo:
Functional RNA structures play an important role both in the context of noncoding RNA transcripts as well as regulatory elements in mRNAs. Here we present a computational study to detect functional RNA structures within the ENCODE regions of the human genome. Since structural RNAs in general lack characteristic signals in primary sequence, comparative approaches evaluating evolutionary conservation of structures are most promising. We have used three recently introduced programs based on either phylogenetic–stochastic context-free grammar (EvoFold) or energy directed folding (RNAz and AlifoldZ), yielding several thousand candidate structures (corresponding to ∼2.7% of the ENCODE regions). EvoFold has its highest sensitivity in highly conserved and relatively AU-rich regions, while RNAz favors slightly GC-rich regions, resulting in a relatively small overlap between methods. Comparison with the GENCODE annotation points to functional RNAs in all genomic contexts, with a slightly increased density in 3′-UTRs. While we estimate a significant false discovery rate of ∼50%–70% many of the predictions can be further substantiated by additional criteria: 248 loci are predicted by both RNAz and EvoFold, and an additional 239 RNAz or EvoFold predictions are supported by the (more stringent) AlifoldZ algorithm. Five hundred seventy RNAz structure predictions fall into regions that show signs of selection pressure also on the sequence level (i.e., conserved elements). More than 700 predictions overlap with noncoding transcripts detected by oligonucleotide tiling arrays. One hundred seventy-five selected candidates were tested by RT-PCR in six tissues, and expression could be verified in 43 cases (24.6%).
Resumo:
The “one-gene, one-protein” rule, coined by Beadle and Tatum, has been fundamental to molecular biology. The rule implies that the genetic complexity of an organism depends essentially on its gene number. The discovery, however, that alternative gene splicing and transcription are widespread phenomena dramatically altered our understanding of the genetic complexity of higher eukaryotic organisms; in these, a limited number of genes may potentially encode a much larger number of proteins. Here we investigate yet another phenomenon that may contribute to generate additional protein diversity. Indeed, by relying on both computational and experimental analysis, we estimate that at least 4%–5% of the tandem gene pairs in the human genome can be eventually transcribed into a single RNA sequence encoding a putative chimeric protein. While the functional significance of most of these chimeric transcripts remains to be determined, we provide strong evidence that this phenomenon does not correspond to mere technical artifacts and that it is a common mechanism with the potential of generating hundreds of additional proteins in the human genome.
Resumo:
Background: We present the results of EGASP, a community experiment to assess the state-ofthe-art in genome annotation within the ENCODE regions, which span 1% of the human genomesequence. The experiment had two major goals: the assessment of the accuracy of computationalmethods to predict protein coding genes; and the overall assessment of the completeness of thecurrent human genome annotations as represented in the ENCODE regions. For thecomputational prediction assessment, eighteen groups contributed gene predictions. Weevaluated these submissions against each other based on a ‘reference set’ of annotationsgenerated as part of the GENCODE project. These annotations were not available to theprediction groups prior to the submission deadline, so that their predictions were blind and anexternal advisory committee could perform a fair assessment.Results: The best methods had at least one gene transcript correctly predicted for close to 70%of the annotated genes. Nevertheless, the multiple transcript accuracy, taking into accountalternative splicing, reached only approximately 40% to 50% accuracy. At the coding nucleotidelevel, the best programs reached an accuracy of 90% in both sensitivity and specificity. Programsrelying on mRNA and protein sequences were the most accurate in reproducing the manuallycurated annotations. Experimental validation shows that only a very small percentage (3.2%) of the selected 221 computationally predicted exons outside of the existing annotation could beverified.Conclusions: This is the first such experiment in human DNA, and we have followed thestandards established in a similar experiment, GASP1, in Drosophila melanogaster. We believe theresults presented here contribute to the value of ongoing large-scale annotation projects and shouldguide further experimental methods when being scaled up to the entire human genome sequence.
Resumo:
Selenocysteine (Sec) is co-translationally inserted into selenoproteins in response to codon UGA with the help of the selenocysteine insertion sequence (SECIS) element. The number of selenoproteins in animals varies, with humans having 25 and mice having 24 selenoproteins. To date, however, only one selenoprotein, thioredoxin reductase, has been detected in Caenorhabditis elegans, and this enzyme contains only one Sec. Here, we characterize the selenoproteomes of C.elegans and Caenorhabditis briggsae with three independent algorithms, one searching for pairs of homologous nematode SECIS elements, another searching for Cys- or Sec-containing homologs of potential nematode selenoprotein genes and the third identifying Sec-containing homologs of annotated nematode proteins. These methods suggest that thioredoxin reductase is the only Sec-containing protein in the C.elegans and C.briggsae genomes. In contrast, we identified additional selenoproteins in other nematodes. Assuming that Sec insertion mechanisms are conserved between nematodes and other eukaryotes, the data suggest that nematode selenoproteomes were reduced during evolution, and that in an extreme reduction case Sec insertion systems probably decode only a single UGA codon in C.elegans and C.briggsae genomes. In addition, all detected genes had a rare form of SECIS element containing a guanosine in place of a conserved adenosine present in most other SECIS structures, suggesting that in organisms with small selenoproteomes SECIS elements may change rapidly.
Resumo:
Background: Despite the continuous production of genome sequence for a number of organisms,reliable, comprehensive, and cost effective gene prediction remains problematic. This is particularlytrue for genomes for which there is not a large collection of known gene sequences, such as therecently published chicken genome. We used the chicken sequence to test comparative andhomology-based gene-finding methods followed by experimental validation as an effective genomeannotation method.Results: We performed experimental evaluation by RT-PCR of three different computational genefinders, Ensembl, SGP2 and TWINSCAN, applied to the chicken genome. A Venn diagram wascomputed and each component of it was evaluated. The results showed that de novo comparativemethods can identify up to about 700 chicken genes with no previous evidence of expression, andcan correctly extend about 40% of homology-based predictions at the 5' end.Conclusions: De novo comparative gene prediction followed by experimental verification iseffective at enhancing the annotation of the newly sequenced genomes provided by standardhomology-based methods.