977 resultados para federated search tool
Resumo:
Background: When experiencing sleep problems for the first time, consumers may often approach community pharmacists for advice as they are easily accessible health care professionals in the community. In Australian community pharmacies there are no specific tools available for use by pharmacists to assist with the assessment and handling of consumers with sleep enquiries. Objective: To assess the feasibility of improving the detection of sleep disorders within the community through the pilot of a newly developed Community Pharmacy Sleep Assessment Tool (COP-SAT). Method: The COP-SAT was designed to incorporate elements from a number of existing, standardized, and validated clinical screening measures. The COP-SAT was trialed in four Australian community pharmacies over a 4-week period. Key findings: A total of 241 community pharmacy consumers were assessed using the COP-SAT. A total of 74 (30.7%) were assessed as being at risk of insomnia, 26 (10.7%) were at risk of daytime sleepiness, 19 (7.9%) were at risk of obstructive sleep apnea, and 121 (50.2%) were regular snorers. A total of 116 (48.1%) participants indicated that they consume caffeine before bedtime, of which 55 (47%) had associated symptoms of sleep onset insomnia. Moreover, 85 (35%) consumed alcohol before bedtime, of which 50 (58%) experienced fragmented sleep, 50 (58%) were regular snorers, and nine (10.6%) had apnea symptoms. The COP-SAT was feasible in the community pharmacy setting. The prevalence of sleep disorders in the sampled population was high, but generally consistent with previous studies on the general population. Conclusion: A large proportion of participants reported sleep disorder symptoms, and a link was found between the consumption of alcohol and caffeine substances at bedtime and associated symptoms. While larger studies are needed to assess the clinical properties of the tool, the results of this feasibility study have demonstrated that the COP-SAT may be a practical tool for the identification of patients at risk of developing sleep disorders in the community.
Resumo:
Nowadays people heavily rely on the Internet for information and knowledge. Wikipedia is an online multilingual encyclopaedia that contains a very large number of detailed articles covering most written languages. It is often considered to be a treasury of human knowledge. It includes extensive hypertext links between documents of the same language for easy navigation. However, the pages in different languages are rarely cross-linked except for direct equivalent pages on the same subject in different languages. This could pose serious difficulties to users seeking information or knowledge from different lingual sources, or where there is no equivalent page in one language or another. In this thesis, a new information retrieval task—cross-lingual link discovery (CLLD) is proposed to tackle the problem of the lack of cross-lingual anchored links in a knowledge base such as Wikipedia. In contrast to traditional information retrieval tasks, cross language link discovery algorithms actively recommend a set of meaningful anchors in a source document and establish links to documents in an alternative language. In other words, cross-lingual link discovery is a way of automatically finding hypertext links between documents in different languages, which is particularly helpful for knowledge discovery in different language domains. This study is specifically focused on Chinese / English link discovery (C/ELD). Chinese / English link discovery is a special case of cross-lingual link discovery task. It involves tasks including natural language processing (NLP), cross-lingual information retrieval (CLIR) and cross-lingual link discovery. To justify the effectiveness of CLLD, a standard evaluation framework is also proposed. The evaluation framework includes topics, document collections, a gold standard dataset, evaluation metrics, and toolkits for run pooling, link assessment and system evaluation. With the evaluation framework, performance of CLLD approaches and systems can be quantified. This thesis contributes to the research on natural language processing and cross-lingual information retrieval in CLLD: 1) a new simple, but effective Chinese segmentation method, n-gram mutual information, is presented for determining the boundaries of Chinese text; 2) a voting mechanism of name entity translation is demonstrated for achieving a high precision of English / Chinese machine translation; 3) a link mining approach that mines the existing link structure for anchor probabilities achieves encouraging results in suggesting cross-lingual Chinese / English links in Wikipedia. This approach was examined in the experiments for better, automatic generation of cross-lingual links that were carried out as part of the study. The overall major contribution of this thesis is the provision of a standard evaluation framework for cross-lingual link discovery research. It is important in CLLD evaluation to have this framework which helps in benchmarking the performance of various CLLD systems and in identifying good CLLD realisation approaches. The evaluation methods and the evaluation framework described in this thesis have been utilised to quantify the system performance in the NTCIR-9 Crosslink task which is the first information retrieval track of this kind.
Resumo:
A genome-wide search for markers associated with BSE incidence was performed by using Transmission-Disequilibrium Tests (TDTs). Significant segregation distortion, i.e., unequal transmission probabilities of alleles within a locus, was found for three marker loci on Chromosomes (Chrs) 5, 10, and 20. Although TDTs are robust to false associations owing to hidden population substructures, it cannot distinguish segregation distortion caused by a true association between a marker and bovine spongiform encephalopathy (BSE) from a population-wide distortion. An interaction test and a segregation distortion analysis in half-sib controls were used to disentangle these two alternative hypotheses. None of the markers showed any significant interaction between allele transmission rates and disease status, and only the marker on Chr 10 showed a significant segregation distortion in control individuals. Nevertheless, the control group may have been a mixture of resistant and susceptible but unchallenged individuals. When new genotypes were generated in the vicinity of these three markers, evidence for an association with BSE was confirmed for the locus on Chr 5.
Resumo:
Aim his study reports the use of exploratory factor analysis to determine construct validity of a modified advanced practice role delineation tool. Background Little research exists on specific activities and domains of practice within advanced practice nursing roles, making it difficult to define service parameters of this level of nursing practice. A valid and reliable tool would assist those responsible for employing or deploying advanced practice nurses by identifying and defining their service profile. This is the third paper from a multi-phase Australian study aimed at assigning advanced practice roles. Methods A postal survey was conducted of a random sample of state government employed Registered nurses and midwives, across various levels and grades of practice in the state of Queensland, Australia, using the modified Advanced Practice Role Delineation tool. Exploratory factor analysis, using principal axis factoring was undertaken to examine factors in the modified tool. Cronbach’s alpha coefficient determined reliability of the overall scale and identified factors. Results There were 658 responses (42% response rate). The five factors found with loadings of ≥.400 for 40 of the 41 APN activities were similar to the five domains in the Strong model. Cronbach’s alpha coefficient was .94 overall and for the factors ranged from 0.83 to 0.95. Conclusion Exploratory factor analysis of the modified tool supports validity of the five domains of the original tool. Further investigation will identify use of the tool in a broader healthcare environment.
Resumo:
Knowledge management (KM) provides a structured process to establish the link between knowledgebased assets within an organisation and its desired business objectives. Although KM issues are becoming increasingly important to the construction industry, there is currently no measurement tool for assessing the implementation of KM programmes. This paper reports on the development of such a tool which can be used as both a means of self-assessment and also for benchmarking purposes. Important practices needed for successful KM implementation were identified from the literature and via a self-administered survey targeting large and medium construction organisations in Hong Kong. Survey findings demonstrate the potential of the proposed self-assessment tool to measure the individual’s perception of the relative importance of KM antecedents and practices, also providing early insight of KM implementation by highlighting the negative gaps between what “is” and “should be” happening, thus identifying areas that need re alignment of KM strategies and tactics. The paper also suggests this tool could be further developed to help organisations to formulate and modify their KM programmes according to their own specific internal business environment, and the nature of their projects.
Resumo:
The main aim of this paper is to describe an adaptive re-planning algorithm based on a RRT and Game Theory to produce an efficient collision free obstacle adaptive Mission Path Planner for Search and Rescue (SAR) missions. This will provide UAV autopilots and flight computers with the capability to autonomously avoid static obstacles and No Fly Zones (NFZs) through dynamic adaptive path replanning. The methods and algorithms produce optimal collision free paths and can be integrated on a decision aid tool and UAV autopilots.
Resumo:
Currently, recommender systems (RS) have been widely applied in many commercial e-commerce sites to help users deal with the information overload problem. Recommender systems provide personalized recommendations to users and thus help them in making good decisions about which product to buy from the vast number of product choices available to them. Many of the current recommender systems are developed for simple and frequently purchased products like books and videos, by using collaborative-filtering and content-based recommender system approaches. These approaches are not suitable for recommending luxurious and infrequently purchased products as they rely on a large amount of ratings data that is not usually available for such products. This research aims to explore novel approaches for recommending infrequently purchased products by exploiting user generated content such as user reviews and product click streams data. From reviews on products given by the previous users, association rules between product attributes are extracted using an association rule mining technique. Furthermore, from product click streams data, user profiles are generated using the proposed user profiling approach. Two recommendation approaches are proposed based on the knowledge extracted from these resources. The first approach is developed by formulating a new query from the initial query given by the target user, by expanding the query with the suitable association rules. In the second approach, a collaborative-filtering recommender system and search-based approaches are integrated within a hybrid system. In this hybrid system, user profiles are used to find the target user’s neighbour and the subsequent products viewed by them are then used to search for other relevant products. Experiments have been conducted on a real world dataset collected from one of the online car sale companies in Australia to evaluate the effectiveness of the proposed recommendation approaches. The experiment results show that user profiles generated from user click stream data and association rules generated from user reviews can improve recommendation accuracy. In addition, the experiment results also prove that the proposed query expansion and the hybrid collaborative filtering and search-based approaches perform better than the baseline approaches. Integrating the collaborative-filtering and search-based approaches has been challenging as this strategy has not been widely explored so far especially for recommending infrequently purchased products. Therefore, this research will provide a theoretical contribution to the recommender system field as a new technique of combining collaborative-filtering and search-based approaches will be developed. This research also contributes to a development of a new query expansion technique for infrequently purchased products recommendation. This research will also provide a practical contribution to the development of a prototype system for recommending cars.
Resumo:
This paper describes the development and validation of a PC based MUARC Driver Distraction Test designed to measure simulated driving performance while the driver is performing a secondary task. The paper discusses the logic behind the development of the test, including the principles that were used to guide its design, as well as the results of a pilot validation study. The findings from this study were consistent with previous research and theory and were consistent with those obtained with the LCT. The results did, however, highlight a number of refinements that were necessary to improve the utility of the test.
Resumo:
Given that both academics and marketers are dissatisfied with the current state of advertising research (Kerr and Schultz, 2010; Neff, 2011), the objective of this exploratory paper is to determine the position of world-leading advertising professionals on the use of social media to test, track and evaluate campaigns. Using Delphi methodology, an international panel of Cannes Gold Lion winners acknowledged that social media research has both strengths and weaknesses, the same as any research. Its strengths are its intimacy and spontaneity, bringing the brand and consumer closer. The real risk is the loss of control in this research environment.
Resumo:
The aim of this work is to develop software that is capable of back projecting primary fluence images obtained from EPID measurements through phantom and patient geometries in order to calculate 3D dose distributions. In the first instance, we aim to develop a tool for pretreatment verification in IMRT. In our approach, a Geant4 application is used to back project primary fluence values from each EPID pixel towards the source. Each beam is considered to be polyenergetic, with a spectrum obtained from Monte Carlo calculations for the LINAC in question. At each step of the ray tracing process, the energy differential fluence is corrected for attenuation and beam divergence. Subsequently, the TERMA is calculated and accumulated to an energy differential 3D TERMA distribution. This distribution is then convolved with monoenergetic point spread kernels, thus generating energy differential 3D dose distributions. The resulting dose distributions are accumulated to yield the total dose distribution, which can then be used for pre-treatment verification of IMRT plans. Preliminary results were obtained for a test EPID image comprised of 100 9 100 pixels of unity fluence. Back projection of this field into a 30 cm9 30 cm 9 30 cm water phantom was performed, with TERMA distributions obtained in approximately 10 min (running on a single core of a 3 GHz processor). Point spread kernels for monoenergetic photons in water were calculated using a separate Geant4 application. Following convolution and summation, the resulting 3D dose distribution produced familiar build-up and penumbral features. In order to validate the dose model we will use EPID images recorded without any attenuating material in the beam for a number of MLC defined square fields. The dose distributions in water will be calculated and compared to TPS predictions.
Resumo:
Video presented as part of BPM2011 demonstration(France). In this video we show a prototype BPMN process modelling tool which uses Augmented Reality techniques to increase the sense of immersion when editing a process model. The avatar represents a remotely logged in user, and facilitates greater insight into the editing actions of the collaborator than present 2D web-based approaches in collaborative process modelling. We modified the Second Life client to integrate the ARToolkit in order to support pattern-based AR.
Resumo:
Least developed countries (LDCs) are the primary victims of environmental changes, including present and future impacts of climate change. Environmental degradation poses a serious threat to the conservation and sustainable use of natural resources, thus hindering development in LDCs. Simultaneously, poverty is itself both a major cause and effect of global environmental problems. Against this backdrop, this essay argues that without recognition and protection of a collective right to development, genuine environmental protection will remain unachievable. Further, this essay submits that, particularly in the context of LDCs, the right to environment and the right to development are inseparable. Finally, this essay argues that the relationship between the right to environment and the right to development must fall within the paradigm of sustainable development if the promotion and protection of those rights are to be justified.
Resumo:
The rapid growth of visual information on Web has led to immense interest in multimedia information retrieval (MIR). While advancement in MIR systems has achieved some success in specific domains, particularly the content-based approaches, general Web users still struggle to find the images they want. Despite the success in content-based object recognition or concept extraction, the major problem in current Web image searching remains in the querying process. Since most online users only express their needs in semantic terms or objects, systems that utilize visual features (e.g., color or texture) to search images create a semantic gap which hinders general users from fully expressing their needs. In addition, query-by-example (QBE) retrieval imposes extra obstacles for exploratory search because users may not always have the representative image at hand or in mind when starting a search (i.e. the page zero problem). As a result, the majority of current online image search engines (e.g., Google, Yahoo, and Flickr) still primarily use textual queries to search. The problem with query-based retrieval systems is that they only capture users’ information need in terms of formal queries;; the implicit and abstract parts of users’ information needs are inevitably overlooked. Hence, users often struggle to formulate queries that best represent their needs, and some compromises have to be made. Studies of Web search logs suggest that multimedia searches are more difficult than textual Web searches, and Web image searching is the most difficult compared to video or audio searches. Hence, online users need to put in more effort when searching multimedia contents, especially for image searches. Most interactions in Web image searching occur during query reformulation. While log analysis provides intriguing views on how the majority of users search, their search needs or motivations are ultimately neglected. User studies on image searching have attempted to understand users’ search contexts in terms of users’ background (e.g., knowledge, profession, motivation for search and task types) and the search outcomes (e.g., use of retrieved images, search performance). However, these studies typically focused on particular domains with a selective group of professional users. General users’ Web image searching contexts and behaviors are little understood although they represent the majority of online image searching activities nowadays. We argue that only by understanding Web image users’ contexts can the current Web search engines further improve their usefulness and provide more efficient searches. In order to understand users’ search contexts, a user study was conducted based on university students’ Web image searching in News, Travel, and commercial Product domains. The three search domains were deliberately chosen to reflect image users’ interests in people, time, event, location, and objects. We investigated participants’ Web image searching behavior, with the focus on query reformulation and search strategies. Participants’ search contexts such as their search background, motivation for search, and search outcomes were gathered by questionnaires. The searching activity was recorded with participants’ think aloud data for analyzing significant search patterns. The relationships between participants’ search contexts and corresponding search strategies were discovered by Grounded Theory approach. Our key findings include the following aspects: - Effects of users' interactive intents on query reformulation patterns and search strategies - Effects of task domain on task specificity and task difficulty, as well as on some specific searching behaviors - Effects of searching experience on result expansion strategies A contextual image searching model was constructed based on these findings. The model helped us understand Web image searching from user perspective, and introduced a context-aware searching paradigm for current retrieval systems. A query recommendation tool was also developed to demonstrate how users’ query reformulation contexts can potentially contribute to more efficient searching.