998 resultados para control of breathing, nucleus isthmi
Resumo:
Southern Hemisphere plantation forestry has grown substantially over the past few decades and will play an increasing role in fibre production and carbon sequestration in future. The sustainability of these plantations is, however, increasingly under pressure from introduced pests. This pressure requires an urgent and matching increase in the speed and efficiency at which tools are developed to monitor and control these pests. To consider the potential role of semiochemicals to address the need for more efficient pest control in Southern Hemisphere plantations, particularly by drawing from research in other parts of the world. Semiochemical research in forestry has grown exponentially over the last 40 years but has been almost exclusively focussed on Northern Hemisphere forests. In these forests, semiochemicals have played an important role to enhance the efficiency of integrated pest management programmes. An analysis of semiochemical research from 1970 to 2010 showed a rapid increase over time. It also indicated that pheromones have been the most extensively studied type of semiochemical in forestry, contributing to 92% of the semiochemical literature over this period, compared with research on plant kairomones. This research has led to numerous applications in detection of new invasions, monitoring population levels and spread, in addition to controlling pests by mass trapping or disrupting of aggregation and mating signals. The value of semiochemicals as an environmentally benign and efficient approach to managing forest plantation pests in the Southern Hemisphere seems obvious. There is, however, a lack of research capacity and focus to optimally capture this opportunity. Given the pressure from increasing numbers of pests and reduced opportunities to use pesticides, there is some urgency to develop semiochemical research capacity.
Resumo:
Biological control techniques attract increasing attention as one of the sustainable alternatives to pesticide use in integrated pest management programs. In order to develop sustainable pest management methods for arable crops based on entomopathogenic nematodes (EPN), their efficacy and persistence needed to be investigated, and an economically feasible delivery system had to be developed. In this study, first a survey of entomopathogens was conducted, and a system approach was tested, using the oilseed Brassica (OSB) growing system (OSB, spring wheat, and red clover) as a model. The system approach aimed at determining the potential of Steinernema feltiae (Filipjev) for the control of OSB pests, developing OSB rotation schemes that support EPN persistence, and investigating the impact of the selected biotic and abiotic factors on efficacy and persistence of EPN. This study employed abductive logic (which employs constant interplay between the theory and empirical observation), quantitative methods, and a case study on OSB. Laboratory and field experiments were carried out, and two types of pathogen surveys. A horizontal survey included OSB fields across Estonia, Germany, Poland, Sweden and the UK, while a vertical survey included sampling from two sets of differently managed experimental fields during three years. A new approach was introduced for measuring occurrence, where the prevalence and relative intensity of entomopathogens, biotic agents, and unidentified insect antagonists were determined. The effect of dose, timing, and the application method on S. feltiae in the control of pests in OSB, and the potential of a controlled release delivery system (CRS) were evaluated in the field. Studies on the impact of selected biotic and abiotc factors (Brassica plant, bait insects, developmental stages of Meligethes aeneus Fab., Isaria fumosorosea Wize (Ifr), and organic and synthetic fertilizers) on the efficacy of S. feltiae were conducted in the laboratory. Persistence of S. feltiae in the OSB growing system, and the effect of dose, timing, and the application method, was assessed in the field as part of the efficacy experiments. The impact of selected biotic and abiotic factors on S. feltiae persistence was assessed in laboratory experiments. The pathogen survey showed that the occurrence of entomopathogens is low in the OSB growing system, and that a management system causing less disturbance (ICM) to the soil increases the relative intensity of insect parasitic nematodes and other insect antagonists. A longer study period is required to show any possible impact of ICM on the relative intensity of entomopathogenic fungi, or on the prevalence of entomopathogens. Two different measures of the occurrence yielded different results: the relative intensity revealed the difference between the two different crop management methods, while prevalence did not. The highest efficacy of S. feltiae was achieved by using a low dose and targeting all stages of M. aeneus. When only the larval stage was targeted, the application method and dose had no significant effect. The CRS decreased the pest abundance significantly more than the surface application method. S. feltiae persisted in the OSB fields in Finland for several months, but did not survive the winter. The strain survived for 7 months when it was applied in autumn in Germany, but its populations declined rapidly after winter. The examined biotic and abiotic factors had variable impacts on S. feltiae efficacy and persistence. The two measures, prevalence and relative intensity of entomopathogens, gave valuable information for their use in biocontrol programs. The recommended biocontrol strategy for OSB growing in Finland is inundation and seasonal inoculation of EPN. The impact of some biotic and abiotic factors on S. feltiae efficacy and persistence is significant, and can be used to improve the efficacy of EPN. The CRS is a novel alternative for EPN application, and should also be considered for use on other crops. Keywords: Biological control, inundation, inoculation, conservation, formulation, slow release method, crop rotation, Entomopathogenic nematodes, Steinernema feltiae, oilseed rape pests, Meligethes aeneus, Phyllotreta spp., occurrence, prevalence, intensity, efficacy, persistence, field, Isaria fumosorosea, biotic factors, abiotic factors, interaction, impact, insect stages, integrated crop management, standard (conventional) crop management
Resumo:
This paper describes the method of field orientation of the stator current vector with respect to the stator, mutual, and rotor flux vectors, for the control of an induction motor fed from a current source inverter (CSI). A control scheme using this principle is described for orienting the stator current with respect to the rotor flux, as this gives natural decoupling between the current coordinates. A dedicated microcomputer system developed for implementing this scheme has been described. The experimental results are also presented.
Resumo:
Mikania micrantha Kunth (Asteraceae), commonly known as ‘mile-a-minute’, is a neotropical plant species now found in 17 Pacific island countries and territories, invading small cropping areas and plantations, thereby reducing productivity and food security. In 2006, a biocontrol project on M. micrantha commenced in Fiji and Papua New Guinea (PNG). The distribution of M. micrantha as well as baseline data such as plant growth rates and socio-economic impacts were determined before the importation of any biocontrol agents. Mikania micrantha was recorded in all 15 lowland provinces in PNG and on all major islands in Fiji. Plants grow about 3.2cm/day in PNG and about 1.9cm/day in Fiji. A socio-economic survey, involving over 370 respondents in over 220 villages from 15 provinces in PNG, found that 78% of respondents considered M. micrantha a serious weed and about 44% had M. micrantha, which they needed to weed at least fortnightly, in over a third of their land. Over 80% of respondents used slashing and/or handpulling as the preferred method of weed control. About 40% of respondents considered that M. micrantha reduced crop yield by more than 30%. In Fiji, 52 respondents from four islands participated in the survey. Over 60% of respondents in Fiji considered M. micrantha a serious weed and 23% had about 30% of their farm lands infested with the weed. Only 15% of respondents needed to weed at least fortnightly, with 56% using slashing and/or hand-pulling as the preferred means of control. Over 65% of respondents estimated that they lost at least 30% of potential crop yield to M. micrantha. Nearly 90% of respondents used M. micrantha as a medicinal plant to treat cuts and wounds. The life history of the rust Puccinia spegazzinii de Toni (Pucciniales: Pucciniaceae), originating from Ecuador, and imported into PNG and Fiji in 2008, was studied. P. spegazzinii is a microcyclic and autoecious rust and has a life cycle of 18-22 days. An efficient culturing and field release method was developed. Since 2008, the rust has been released at over 450 sites in 15 provinces in PNG, establishing at nearly 70 sites in four provinces. From some sites, the rust has spread over 7 km in 12 months. In Fiji, the rust has been released at over 80 sites, on four of the main islands, namely Viti Levu, Vanua Levu, Taveuni and Ovalau, and has established at 20 sites on Viti Levu and Vanua Levu. Plant growth studies and field monitoring in PNG showed that P. spegazzinii can significantly reduce the growth and density of M. micrantha and offers great potential for the control of this weed.
Resumo:
Despite of improving levels of hygiene, the incidence of registered food borne disease has been at the same level for many years: there were 40 to 90 epidemics in which 1000-9000 persons contracted food poisoning through food or drinking water in Finland. Until the year 2004 salmonella and campylobacter were the most common bacterial causes of food borne diseases, but in years 2005-2006 Bacillus cereus was the most common. Similar developement has been published i.e. in Germany already in the 1990´s. One reason for this can be Bacillus cereus and its emetic toxin, cereulide. Bacillus cereus is a common environmental bacterium that contaminates raw materials of food. Otherwise than salmonella and campylobacter, Bacillus cereus is a heat resistant bacterium, capable of surviving most cooking procedures due to the production of highly thermo resistant spores. The food involved has usually been heat treated and surviving spores are the source of the food poisoning. The heat treatment induces germination of the spore and the vegetative cells then produce toxins. This doctoral thesis research focuses on developing methods for assessing and eliminating risks to food safety by cereulide producing Bacillus cereus. The biochemistry and physiology of cereulide production was investigated and the results were targeted to offer tools for minimizing toxin risk in food during the production. I developed methods for the extraction and quantitative analysis of cereulide directly from food. A prerequisite for that is knowledge of the chemical and physical properties of the toxin. Because cereulide is practically insoluble in water, I used organic solvents; methanol, ethanol and pentane for the extraction. For extraction of bakery products I used high temperature (100C) and pressure (103.4 bars). Alternaties for effective extraction is to flood the plain food with ethanol, followed by stationary equilibration at room temperature. I used this protocol for extracting cereulide from potato puree and penne. Using this extraction method it is also possible also extract cereulide from liquid food, like milk. These extraction methods are important improvement steps for studying of Bacillus cereus emetic food poisonings. Prior my work, cereulide extraction was done using water. As the result, the yield was poor and variable. To investigate suspected food poisonings, it is important to show actual toxicity of the incriminated food. Many toxins, but not cereulide, inactivate during food processing like heating. The next step is to identify toxin by chemical methods. I developed with my colleague Maria Andesson a rapid assay for the detection of cereulide toxicity, within 5 to 15 minutes. By applying this test it is possible to rapidly detect which food was causing the food poisoning. The chemical identification of cereulide was achieved using mass spectrometry. I used cereulide specific molecular ions, m/z (+/-0.3) 1153.8 (M+H+), 1171.0 (M+NH4+), 1176.0 (M+Na+) and 1191.7 (M+K+) for reliable identification. I investigated foods to find out their amenability to accumulate cereulide. Cereulide was formed high amounts (0.3 to 5.5 microg/g wet wt) when of cereulide producing B. cereus strains were present in beans, rice, rice-pastry and meat-pastry, if stored at non refrigerated temperatures (21-23C). Rice and meat pastries are frequently consumed under conditions where no cooled storage is available e.g. picnics and outdoor events. Bacillus cereus is a ubiquitous spore former and is therefore difficult to eliminate from foods. It is therefore important to know which conditions will affect the formation of cereulide in foods. My research showed that the cereulide content was strongly (10 to 1000 fold differences in toxin content) affected by the growth environment of the bacterium. Storage of foods under nitrogen atmosphere (> 99.5 %) prevented the production of cereulide. But when also carbon dioxide was present, minimizing the oxygen contant (< 1%) did not protect the food from formation of cereulide in preliminary experiments. Also food supplements affected cereulide production at least in the laboratory. Adding free amino acids, leucine and valine, stimulated cereulide production 10 to 20 fold. In peptide bonded form these amino acids are natural constituents in all proteins. Interestingly, adding peptide bonded leucine and valine had no significant effect on cereulide production. Free amino acids leucine and valine are approved food supplements and widely used as flawour modifiers in food technology. My research showed that these food supplements may increase food poisoning risk even though they are not toxic themselves.
Resumo:
Calotropis procera (Apocynaceae), a native of tropical Africa, the Middle East and the Indian subcontinent, is a serious environmental and rangeland weed of Australia and Brazil. It is also a weed in Hawaii in USA, the Caribbean Islands, the Seychelles, Mexico, Thailand, Vietnam and many Pacific Islands. In the native range C. procera has many natural enemies, thus classical biological control could be the most cost-effective option for its long-term management. Based on field surveys in India and a literature search, some 65 species of insects and five species of mites have been documented on C. procera and another congeneric-invador C. gigantea in the native range. All the leaf-feeding and stem-boring agents recorded on Calotropis spp. have wide host range. Three pre-dispersal seed predators,the Aak weevil Paramecops farinosus and the Aak fruit fly Dacuspersicus in the Indian subcontinent, and the Sodom apple fruit fly Dacus longistylus in the Middle East have been identified as prospective biological control agents based on their field host range. In Australia and Brazil, where C. procera has the potential to spread across vast areas, pre-dispersal seed predators would help to limit the spread of the weed. While the fruits of C. procera vary in size and shape across its range, those from India are similar to the ones in Australia and Brazil. Hence, seed-feeding insects from India are more likely to be suitable due to adaptation to fruit size and morphology. Future survey efforts for potential biological control agents should focus on North Africa.
Resumo:
Prochloraz as Sportak at 450 g a.i./L is registered for the control of postharvest diseases in papaya in Australia. A project in far north Queensland in 2011, examined the use patterns of postharvest treatments, evaluated treatment dips and sprays for prochloraz concentrations and evaluated the efficacy of prochloraz at 0, 20, 40, 55 and 70 ml/100 L, fludioxonil as Scholar at 260 ml/100 L and azoxystrobin as Amistar at 50 ml/100 L. Results showed that packing shed use of Sportak varied with recycled and stored solutions showing a depletion of the active ingredient. Measured prochloraz in solution was highly pH dependent with nominal solution values only being measured when the pH was less than 3.0. In the fungicide efficacy trial Sportak at the label rate of 55 ml/100 L provided more effective disease control than fludioxonil and azoxystrobin. The trial also suggested that fruit from older trees showed a high degree of disease incidence relative to fruit from young trees.
Resumo:
Frankliniella occidentalis (Pergande), western flower thrips (WFT), is a major worldwide pest of vegetables and ornamental crops. The biology of WFT was examined on gerberas, chrysanthemums and roses in relation to plant stage (flowering and non-flowering), pupation site, soil moisture and plant parts often inhabited by adult and immature thrips. Four foliage thrips predators ( Transeius montdorensis (Schicha), Orius armatus (Gross), Mallada signata (Schneider) and Neoseiulus cucumeris (Oudemans)) and three soil predators ( Geolaelaps aculeifer (Canestrini), Steinernema feltiae (Filipjev) and Dalotia coriaria (Kraatz)) were studied to determine their ability to reduce the numbers of WFT on gerberas, chrysanthemums and roses. There was no difference in the number of adults that emerged from growing media of high or low moisture content on any host plant. There were also no differences in the total numbers of WFT recaptured from flowering gerberas, chrysanthemums or roses. However, about seven times the number of thrips were collected from flowering chrysanthemums compared with non-flowering chrysanthemums, indicating that the flowering plants were more suitable hosts. Of all thrips recollected, the greatest percentage was immature (larval and pupal) thrips (70%, 71% and 43%) on the flowers for gerberas, chrysanthemums and roses, respectively. The mean percentage of thrips that emerged as adults from the soil was very low (5.31.2, 8.52.9, 20.59.1 and 28.25.6%) on gerberas, flowering and non-flowering chrysanthemums, and roses, respectively. Simultaneous release of foliage and soil predators did not reduce the number of thrips beyond that caused by foliage predators alone. Of the foliage predators, T. montdorensis, O. armatus and N. cucumeris performed best, significantly reducing the numbers of adult and immature thrips on flowers and foliage by 30-99%. Further research is required to determine the most cost-effective rates of release in cut flower crops.
Resumo:
Micelles as media for chemical reactions exhibit features that are unique in comparison to ordinary non-aqueous or aqueous solvent media. A thermal or photochemical reaction conducted in micellar media is influenced by the micellar environmental effects resulting in control and/or modification of reactivity. The salient features of micelles and their influence on photochemical reactivity are briefly discussed in this paper.
Resumo:
Conyza bonariensis is a major weed infesting zero-tilled cropping systems in subtropical Australia, particularly in wheat and winter fallows. Uncontrolled C.bonariensis survives to become a problem weed in the following crops or fallows. As no herbicide has been registered for C.bonariensis in wheat, the effectiveness of 11 herbicides, currently registered for other broad-leaved weeds in wheat, was evaluated in two pot and two field experiments. As previous research showed that the age of C.bonariensis, and to a lesser extent, the soil moisture at spraying affected herbicide efficacy, these factors also were investigated. The efficacy of the majority of herbicide treatments was reduced when large rosettes (5-15cm diameter) were treated, compared with small rosettes (<5cm diameter). However, for the majority of herbicide treatments, the soil moisture did not affect the herbicide efficacy in the pot experiments. In the field, a delay in herbicide treatment of 2 weeks reduced the herbicide efficacy consistently across herbicide treatments, which was related to weed age but not to soil moisture differences. Across all the experiments, four herbicides controlled C.bonariensis in wheat consistently (83-100%): 2,4-D; aminopyralid + fluroxypyr; picloram + MCPA + metsulfuron; and picloram + high rates of 2,4-D. Thus, this problem weed can be effectively and consistently controlled in wheat, particularly when small rosettes are treated, and therefore C.bonariensis will have a less adverse impact on the following fallow or crop.