956 resultados para calibrated fMRI
Resumo:
The leaf area index (LAI) of fast-growing Eucalyptus plantations is highly dynamic both seasonally and interannually, and is spatially variable depending on pedo-climatic conditions. LAI is very important in determining the carbon and water balance of a stand, but is difficult to measure during a complete stand rotation and at large scales. Remote-sensing methods allowing the retrieval of LAI time series with accuracy and precision are therefore necessary. Here, we tested two methods for LAI estimation from MODIS 250m resolution red and near-infrared (NIR) reflectance time series. The first method involved the inversion of a coupled model of leaf reflectance and transmittance (PROSPECT4), soil reflectance (SOILSPECT) and canopy radiative transfer (4SAIL2). Model parameters other than the LAI were either fixed to measured constant values, or allowed to vary seasonally and/or with stand age according to trends observed in field measurements. The LAI was assumed to vary throughout the rotation following a series of alternately increasing and decreasing sigmoid curves. The parameters of each sigmoid curve that allowed the best fit of simulated canopy reflectance to MODIS red and NIR reflectance data were obtained by minimization techniques. The second method was based on a linear relationship between the LAI and values of the GEneralized Soil Adjusted Vegetation Index (GESAVI), which was calibrated using destructive LAI measurements made at two seasons, on Eucalyptus stands of different ages and productivity levels. The ability of each approach to reproduce field-measured LAI values was assessed, and uncertainty on results and parameter sensitivities were examined. Both methods offered a good fit between measured and estimated LAI (R(2) = 0.80 and R(2) = 0.62 for model inversion and GESAVI-based methods, respectively), but the GESAVI-based method overestimated the LAI at young ages. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Warm-season grasses are economically important for cattle production in tropical regions, and tools to aid in management and research of these forages would be highly beneficial. Crop simulation models synthesize numerous physiological processes and are important research tools for evaluating production of warm-season grasses. This research was conducted to adapt the perennial CROPGRO Forage model to simulate growth of the tropical species palisadegrass [Brachiaria brizantha (A. Rich.) Stapf. cv. Xaraes] and to describe model adaptation for this species. In order to develop the CROPGRO parameters for this species, we began with values and relationships reported in the literature. Some parameters and relationships were calibrated by comparison with observed growth, development, dry matter accumulation and partitioning during a 2-year experiment with Xaraes palisadegrass in Piracicaba, SP, Brazil. Starting with parameters for the bahiagrass (Paspalum notatum Flugge) perennial forage model, dormancy effects had to be minimized, and partitioning to storage tissue/root decreased, and partitioning to leaf and stem increased to provide for more leaf and stem growth and less root. Parameters affecting specific leaf area (SLA) and senescence of plant tissues were improved. After these changes were made to the model, biomass accumulation was better simulated, mean predicted herbage yield per cycle was 3573 kg ha(-1), with a RMSE of 538 kg DM ha(-1) (D-Stat = 0.838, simulated/observed ratio = 1.028). The results of the adaptation suggest that the CROPGRO model is an efficient tool to integrate physiological aspects of palisadegrass and can be used to simulate growth. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
By allowing the estimation of forest structural and biophysical characteristics at different temporal and spatial scales, remote sensing may contribute to our understanding and monitoring of planted forests. Here, we studied 9-year time-series of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on a network of 16 stands in fast-growing Eucalyptus plantations in Sao Paulo State, Brazil. We aimed to examine the relationships between NDVI time-series spanning entire rotations and stand structural characteristics (volume, dominant height, mean annual increment) in these simple forest ecosystems. Our second objective was to examine spatial and temporal variations of light use efficiency for wood production, by comparing time-series of Absorbed Photosynthetically Active Radiation (APAR) with inventory data. Relationships were calibrated between the NDVI and the fractions of intercepted diffuse and direct radiation, using hemispherical photographs taken on the studied stands at two seasons. APAR was calculated from the NDVI time-series using these relationships. Stem volume and dominant height were strongly correlated with summed NDVI values between planting date and inventory date. Stand productivity was correlated with mean NDVI values. APAR during the first 2 years of growth was variable between stands and was well correlated with stem wood production (r(2) = 0.78). In contrast, APAR during the following years was less variable and not significantly correlated with stem biomass increments. Production of wood per unit of absorbed light varied with stand age and with site index. In our study, a better site index was accompanied both by increased APAR during the first 2 years of growth and by higher light use efficiency for stem wood production during the whole rotation. Implications for simple process-based modelling are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A simple method with a fast sample preparation procedure for total and inorganic mercury determinations in blood samples is proposed based on flow injection cold vapor inductively coupled plasma mass spectrometry (FI-CVICP-MS). Aliquots of whole blood (500 mL) are diluted 1 + 1 v/v with 10.0% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 3 h at room temperature and then further diluted 1 + 4 v/v with 2.0% v/v HCl. The inorganic Hg was released by online addition of L-cysteine and then reduced to elemental Hg by SnCl(2). On the other hand, total mercury was determined by on-line addition of KMnO(4) and then reduced to elemental Hg by NaBH(4). Samples were calibrated against matrix-matching. The method detection limit was found to be 0.80 mu g L(-1) and 0.08 mu g L(-1) for inorganic and total mercury, respectively. Sample throughput is 20 samples h(-1). The method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). For additional validation purposes, human whole blood samples were analyzed by the proposed method and by an established CV AAS method, with no statistical difference between the two techniques at 95% confidence level on applying the t-test.
Resumo:
Expansion tubes are impulse facilities capable of generating highly energetic hyper-sonic flows. This work surveys a broad range of flow conditions produced in the facility X1 with carbon dioxide test gas, for simulation of spacecraft entry into the Martian atmosphere. Conditions with nominal flow speeds of 7, 9, 11 and 13 km/s were tested. The freestream conditions were calibrated using static/Pitot pressure measurements and advanced optical diagnostics. An extensive set of holographic interferometry experiments was performed on flows over wedges for quantitative study of freestream and post-shock densities, and post-shock ionisation. A one-dimensional code with frozen and equilibrium chemistry capabilities was used to estimate the freestream conditions. An equilibrium chemistry model produced a good match to measured freestream quantities at the high enthalpy conditions which are a major aim of this facility's operation. The freestream in the lower enthalpy conditions was found to be heavily influenced by chemical non-equilibrium. Non-equilibrium in the final unsteady expansion process of flow generation was accounted for by switching from equilibrium to frozen chemistry at a predetermined point. Comparison between the freestream density results of holographic interferometry, pressure measurements and computations shows good agreement.
Resumo:
Cerebral responses to alternating periods of a control task and a selective letter generation paradigm were investigated with functional Magnetic Resonance Imaging (fMRI). Subjects selectively generated letters from four designated sets of six letters from the English language alphabet, with the instruction that they were not to produce letters in alphabetical order either forward or backward, repeat or alternate letters. Performance during this condition was compared with that of a control condition in which subjects recited the same letters in alphabetical order. Analyses revealed significant and extensive foci of activation in a number of cerebral regions including mid-dorsolateral frontal cortex, inferior frontal gyrus, precuneus, supramarginal gyrus, and cerebellum during the selective letter generation condition. These findings are discussed with respect to recent positron emission tomography (PET) and fMRI studies of verbal working memory and encoding/retrieval in episodic memory.
Resumo:
The use of computational fluid dynamics simulations for calibrating a flush air data system is described, In particular, the flush air data system of the HYFLEX hypersonic vehicle is used as a case study. The HYFLEX air data system consists of nine pressure ports located flush with the vehicle nose surface, connected to onboard pressure transducers, After appropriate processing, surface pressure measurements can he converted into useful air data parameters. The processing algorithm requires an accurate pressure model, which relates air data parameters to the measured pressures. In the past, such pressure models have been calibrated using combinations of flight data, ground-based experimental results, and numerical simulation. We perform a calibration of the HYFLEX flush air data system using computational fluid dynamics simulations exclusively, The simulations are used to build an empirical pressure model that accurately describes the HYFLEX nose pressure distribution ol cr a range of flight conditions. We believe that computational fluid dynamics provides a quick and inexpensive way to calibrate the air data system and is applicable to a broad range of flight conditions, When tested with HYFLEX flight data, the calibrated system is found to work well. It predicts vehicle angle of attack and angle of sideslip to accuracy levels that generally satisfy flight control requirements. Dynamic pressure is predicted to within the resolution of the onboard inertial measurement unit. We find that wind-tunnel experiments and flight data are not necessary to accurately calibrate the HYFLEX flush air data system for hypersonic flight.
Resumo:
Little is known of the neural mechanisms of marsupial olfaction. However, functional magnetic resonance imaging (fMRI) has made it possible to visualize dynamic brain function in mammals without invasion. In this study, central processing of urinary pheromones was investigated in the brown antechinus, Antechinus stuartii, using fMRI. Images were obtained from 18 subjects (11 males, 7 females) in response to conspecific urinary olfactory stimuli. Significant indiscriminate activation occurred in the accessory olfactory bulb, entorhinal, frontal, and parietal cortices in response to both male and female urine. The paraventricular nucleus of hypothalamus, ventrolateral thalamic nucleus, and medial preoptic area were only activated in response to male urine. Results of this MRI study indicate that projections of accessory olfactory system are activated by chemo-sensory cues. Furthermore, it appears that, based on these experiments, urinary pheromones may act on the hypothalamo-pituitary-adrenocortical axis via the paraventricular nucleus of the hypothalamus and may play an important role in the unique life history pattern of A. stuartii. Finally, this study has demonstrated that fMRI may be a powerful tool for investigations of olfactory processes in mammals.
Resumo:
Thirst was induced by rapid i.v. infusion of hypertonic saline (0.51 M at 13.4 ml/min). Ten humans were neuroimaged by positron-emission tomography (PET) and four by functional MRI (fMRI). PET images were made 25 min after beginning infusion, when the sensation of thirst began to enter the stream of consciousness. The fMRI images were made when the maximum rate of increase of thirst occurred. The PET results showed regional cerebral blood flow changes similar to those delineated when thirst was maximal. These loci involved the phylogenetically ancient areas of the brain. fMRI showed activation in the anterior wall of the third ventricle, an area that is key in the genesis of thirst but is not an area revealed by PET imaging. Thus, this region plays as major a role in thirst for humans as for animals. Strong activations in the brain with fMRI included the anterior cingulate, parahippocampal gyrus, inferior and middle frontal gyri, insula, and cerebellum. When the subjects drank water to satiation, thirst declined immediately to baseline. A precipitate decline in intensity of activation signal occurred in the anterior cingulate area (Brodmann area 32) putatively related to consciousness of thirst. The intensity of activation in the anterior wall of the third ventricle was essentially unchanged, which is consistent with the fact that a significant time (15-20 min) would be needed before plasma Na concentration changed as a result of water absorption from the gut.
Resumo:
The applicability of image calibration to like-values in mapping water quality parameters from multitemporal images is explored, Six sets of water samples were collected at satellite overpasses over Moreton Bay, Brisbane, Australia. Analysis of these samples reveals that waters in this shallow bay are mostly TSS-dominated, even though they are occasionally dominated by chlorophyll as well. Three of the images were calibrated to a reference image based on invariant targets. Predictive models constructed from the reference image were applied to estimating total suspended sediment (TSS) and Secchi depth from another image at a discrepancy of around 35 percent. Application of the predictive model for TSS concentration to another image acquired at a time of different water types resulted in a discrepancy of 152 percent. Therefore, image calibration to like-values could be used to reliably map certain water quality parameters from multitemporal TM images so long as the water type under study remains unchanged. This method is limited in that the mapped results could be rather inaccurate if the water type under study has changed considerably. Thus, the approach needs to be refined in shallow water from multitemporal satellite imagery.
Resumo:
We model and calibrate the arguments in favor and against short-term and long-term debt. These arguments broadly include: maturity premium, sustainability, and service smoothing. We use a dynamic-equilibrium model with tax distortions and government outlays uncertainty, and model maturity as the fraction of debt that needs to be rolled over every period. In the model, the benefits of defaulting are tempered by higher future interest rates. We then calibrate our artificial economy and solve for the optimal debt maturity for Brazil as an example of a developing country and the US as an example of a mature economy. We obtain that the calibrated costs from defaulting on long-term debt more than offset costs associated with short-term debt. Therefore, short-term debt implies higher welfare levels.
Resumo:
Most models currently used to determine optimal foreign reserve holdings take the level of international debt as given. However, given the sovereign`s willingness-to-pay incentive problems, reserve accumulation may reduce sustainable debt levels. In addition, assuming constant debt levels does not allow addressing one of the puzzles behind using reserves as a means to avoid the negative effects of crisis: why do not sovereign countries reduce their sovereign debt instead? To study the joint decision of holding sovereign debt and reserves, we construct a stochastic dynamic equilibrium model calibrated to a sample of emerging markets. We obtain that the reserve accumulation does not play a quantitatively important role in this model. In fact, we find the optimal policy is not to hold reserves at all. This finding is robust to considering interest rate shocks, sudden stops, contingent reserves and reserve dependent output costs. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper uses a fully operational inter-regional computable general equilibrium (CGE) model implemented for the Brazilian economy, based on previous work by Haddad and Hewings, in order to assess the likely economic effects of road transportation policy changes in Brazil. Among the features embedded in this framework, modelling of external scale economies and transportation costs provides an innovative way of dealing explicitly with theoretical issues related to integrated regional systems. The model is calibrated for 109 regions. The explicit modelling of transportation costs built into the inter-regional CGE model, based on origin-destination flows, which takes into account the spatial structure of the Brazilian economy, creates the capability of integrating the inter-regional CGE model with a geo-coded transportation network model enhancing the potential of the framework in understanding the role of infrastructure on regional development. The transportation model used is the so-called Highway Development and Management, developed by the World Bank, implemented using the software TransCAD. Further extensions of the current model specification for integrating other features of transport planning in a continental industrialising country like Brazil are discussed, with the goal of building a bridge between conventional transport planning practices and the innovative use of CGE models. In order to illustrate the analytical power of the integrated system, the authors present a set of simulations, which evaluate the ex ante economic impacts of physical/qualitative changes in the Brazilian road network (for example, a highway improvement), in accordance with recent policy developments in Brazil. Rather than providing a critical evaluation of this debate, they intend to emphasise the likely structural impacts of such policies. They expect that the results will reinforce the need to better specifying spatial interactions in inter-regional CGE models.
Resumo:
Exponential and sigmoidal functions have been suggested to describe the bulk density profiles of crusts. The present work aims to evaluate these conceptual models using high resolution X-radiography. Repacked seedbeds from two soil materials, air-dried or prewetted by capillary rise, were subjected to simulated rain, which resulted in three types of structural crusts, namely, slaking, infilling, and coalescing. Bulk density distributions with depth were generated using high-resolution (70 mum), calibrated X-ray images of slices from the resin-impregnated crusted seedbeds. The bulk density decreased progressively with depth, which supports the suggestion that a crust should be considered as a nonuniform layer. For the slaking and the coalescing crusts, the exponential function underestimated the strong change in bulk density across the morphologically defined transition between the crust and the underlying material; the sigmoidal function provided a better description. Neither of these crust models effectively described the shape of the bulk density profiles through the whole seedbed. Below the infilling and slaking crusts, bulk density increased linearly with depth as a result of slumping. In the coalescing crusted seedbed, the whole seedbed uniformly collapsed and most of the bulk density change within the crust could be ascribed to slumping (0.33 g cm(-3)) rather than to crusting (0.12 g cm(-3)). Finally, (i) X-radiography appears as a unique tool to generate high resolution bulk density profiles and (ii) in structural crusts, bulk density profiles could be modeled using the existing exponential and sigmoidal crusting models, provided a slumping model would be coupled.
Resumo:
When two targets are presented in rapid succession, identification of the first target is nearly perfect while identification of the second is severely impaired at shorter inter-target lags, and then gradually improves as lag increases. This second-target deficit is known as the attentional blink (AB). Numerous studies have implicated competition for access to higher-order processing mechanisms as the primary cause of the AB. However, relatively few studies have directly examined how the AB modulates activity in specific brain areas. To this end, we used fMRI to measure activation in the occipital and parietal cortices (including V1, V2, and area MT) during an AB task. Participants were presented with an initial target of oriented line segments embedded in a central stream of letter distractors. This central target was followed 100 - 700 ms later by a peripheral ‘X’ presented at one of four locations along with three ‘+’ distractors. All peripheral items were presented in the centre of a small field of moving dots. Participants made non-speeded judgments about line-segment orientation and the location of the second target at the end of a trial and to ignore all other stimuli. The results showed a robust AB characterised by a linear improvement in second-target accuracy as lag increased. This pattern of behavioural results was mirrored by changes in activation patterns across a number of visual areas indicating robust modulation of brain activity by the AB.