954 resultados para aqueous two phase system
Resumo:
The result of few-particle ground-state calculation employing a two-particle nonlocal potential supporting a continuum bound state in addition to a negative-energy bound state has occasionally revealed unusually strong attraction in producing a very strongly bound ground state. In the presence of the continuum bound state the difference of phase shift between zero and infinite energies has an extra jump of pi as in the presence of an additional bound state. The wave function of the continuum bound state is identical with that of a strongly bound negative-energy state, which leads us to postulate a pseudo bound state in the two-particle system in order to explain the unexpected attraction. The role of the Pauli forbidden states is expected to be similar to these pseudo states.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this letter is to propose an alternative modal representation of a nontransposed three-phase transmission line with a vertical symmetry plane by using two transformation matrices. Initially, Clarke's matrix is used to separate the line into components a, 0, and zero. Because a and zero components are not exact modes, they can be considered as being a two-phase line that will be decomposed in its exact modes by using a 2 x 2 modal transformation matrix. This letter will describe the characteristics of the two-phase line before mentioned. This modal representation is applied to decouple a nontransposed three-phase transmission line with a vertical symmetry plane whose nominal voltage is 440 kV.
Resumo:
Steroids hormones modify the hematological features of homozygous sickle cell disease, including the levels of fetal hemoglobin. We used semi-quantitative RT-PCR analysis of GATA-1, GATA-2, NF-E2, and gamma-globin mRNA levels in a two-phase liquid culture system of human adult erythroid cells in order to assay the effect of progesterone upon gene expression. The levels of expression of GATA-1 and gamma-globin mRNA were significantly increased in cells treated with progesterone compared to untreated cells (1.7- to 2.0-fold). Progesterone treatment did not produce any stimulatory effect upon GATA-2 and NF-E2 mRNA expression. Differences in the synthesis of HbF protein could not be detected by flow cytometry, although we observed a small difference in mean intensity fluorescence between cells treated and cells untreated with progesterone on days 7 and 9. Using anti-transferrin receptor and anti-glycophorin A antibodies, we verified that addition of progesterone did not cause any change in erythroid proliferation and differentiation. In conclusion, it is possible that the increased expression of gamma-globin mRNA after progesterone treatment observed in this study may be related to the increased GATA-1 mRNA expression. Interactions of the steroid receptors with the basal transcriptional machinery and with transcription factors might mediate their transcriptional effects. (C) 2002 Elsevier B.V. (USA).
Resumo:
This study describes a technical analysis of a four-phase line as a transmission system alternative. An analysis in the frequency and the time domains is performed to evaluate the electrical characteristics and the transient response of a generic four-phase system compared with those of a conventional three-phase transmission system. The technical features of this non-conventional system are discussed and reviewed based on the current literature. Thus, a new analysis of the four-phase system is presented that emphasises several technical characteristics that have not been discussed in previous studies.
Resumo:
Solvent effects play a major role in controlling electron-transfer reactions. The solvent dynamics happens on a very high-dimensional surface, and this complex landscape is populated by a large number of minima. A critical problem is to understand the conditions under which the solvent dynamics can be represented by a single collective reaction coordinate. When this unidimensional representation is valid, one recovers the successful Marcus theory. In this study the approach used in a previous work [V. B. P. Leite and J. N. Onuchic; J. Phys. Chem. 100, 7680 (1996)] is extended to treat a more realistic solvent model, which includes energy correlation. The dynamics takes place in a smooth and well behaved landscape. The single shell of solvent molecules around a cavity is described by a two-dimensional system with periodic boundary conditions with nearest neighbor interaction. It is shown how the polarization-dependent effects can be inferred. The existence of phase transitions depends on a factor y proportional to the contribution from the two parameters of the model. For the present model, γ suggests the existence of weak kinetic phase transitions, which are used in the analysis of solvent effects in charge-transfer reactions. © 1999 American Institute of Physics.
Resumo:
The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into Quasi-modes α, β and zero. After that, Quasi-modes α and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a non-transposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km. © 2006 IEEE.
Resumo:
An alternative method is presented in this paper to identify the harmonic components of non-linear loads in single phase power systems based on artificial neural networks. The components are identified by analyzing the single phase current waveform in time domain in half-cycle of the ac voltage source. The proposed method is compared to the fast Fourier transform. Simulation and experimental results are presented to validate the proposed approach.
Resumo:
This paper presents the study of the so called Generalized Symmetrical Components, proposed by Tenti et. al. to the analysis of unbalanced periodic non sinusoidal three phase systems. As a result, it was possible to establish a proper relationship between such of generalized symmetrical components and Fortescue symmetrical components to the harmonic frequencies that compose a generic periodic non sinusoidal three phase system. © 2011 IEEE.
Resumo:
Modal analysis is widely approached in the classic theory of transmission line modeling. This technique is applied to model the three-phase representation of conventional electric systems taking into account their self and mutual electrical parameters. However the methodology has some particularities and inaccuracies for specific applications which are not clearly described in the basic references of this topic. This paper provides a thorough review of modal analysis theory applied to line models followed by an original and simple procedure to overcome the possible errors embedded in the modal decoupling through the three-phase system modeling. © 2012 IEEE.
Resumo:
The phases of a transmission line are tightly coupled due to mutual impedances and admittances of the line. One way to accomplish the calculations of currents and voltages in multi-phase lines consists in representing them in modal domain, where its n coupled phases are represented by their n propagation modes. The separation line in their modes of propagation is through the use of a modal transformation matrix whose columns are eigenvectors associated with the parameters of the line. Usually, this matrix is achieved through numerical methods which do not allow the achievement of an analytical model for line developed directly in the phases domain. This work will show an analytical model for phase currents and voltages of the line and results it will be applied to a hypothetical two-phase. It will be shown results obtained with that will be compared to results obtained using a classical model. © 2012 IEEE.
Resumo:
The phases of a transmission line are tightly coupled due to mutual impedances and admittances of the line. One way to accomplish the calculations of currents and voltages in multi phase lines consists in representing them in modal domain, where its n coupled phases are represented by their n propagation modes. The separation line in their modes of propagation is through the use of a modal transformation matrix whose columns are eigenvectors associated with the parameters of the line. Usually, this matrix is achieved through numerical methods which do not allow the achievement of an analytical model for line developed directly in the phases domain. This work will show an analytical model for phase currents and voltages of the line and results it will be applied to a hypothetical two-phase. It will be shown results obtained with that will be compared to results obtained using a classical model © 2003-2012 IEEE.
Resumo:
Delayed feedback (DF) control is a well-established technique to suppress single frequency vibration of a non-minimum phase system. Modal control is also a well-established technique to control multiple vibration modes of a minimum phase system. In this paper these techniques are combined to simultaneously suppress multiple vibration modes of a non-minimum phase system involving a small time delay. The control approach is called delayed resonant feedback (DRF) where each modal controller consists of a modal filter to extract the target mode signal from the vibration response, and a phase compensator to account for the phase delay of the mode. The methodology is first discussed using a single mode system. A multi-mode system is then studied and experimental results are presented to demonstrate the efficacy of the control approach for two modes of a beam. It is shown that the system behaves as if each mode under control has a dynamic vibration absorber attached to it, even though the actuator and the sensor are not collocated and there is a time delay in the control system. © 2013 IOP Publishing Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS