992 resultados para Zero order
Resumo:
A qualidade é um factor-chave na indústria automóvel. Todos os fornecedores de componentes para a indústria automóvel estão sujeitos a qualificações e auditorias sistemáticas, com vista a melhorar os processos e verificar a sua rastreabilidade. Quando os processos assentam essencialmente em mão-de-obra intensiva, torna-se muito mais difícil atingir a ambicionada meta dos zero-defeitos, e a garantia da qualidade pode ficar comprometida, sendo necessário instalar procedimentos de controlo mais apurados. No entanto, se o processo ou processos forem convenientemente definidos, e se optar por capital intensivo em detrimento da mão-de-obra intensiva, a garantia da qualidade pode ser uma realidade, podendo ser fortemente minimizadas as operações de controlo da qualidade. Este trabalho teve por base a necessidade de reduzir fortemente, ou eliminar mesmo, o aparecimento de defeitos de montagem num sistema designado por remachado. Após cuidada análise do processo instalado, já parcialmente automatizado, mas ainda fortemente dependente de mão-de-obra, procedeu-se ao projecto de um equipamento capaz de reproduzir o mesmo efeito, mas que acomodasse alguns possíveis defeitos oriundos dos fornecedores dos componentes que são inseridos neste conjunto, colocados a montante na cadeia de fornecimento do produto. O equipamento resultante deste trabalho permitiu baixar o tempo de ciclo, acomodar a variabilidade dimensional detectada nos componentes que constituem o conjunto e reduzir drasticamente o número de não-conformidades.
Resumo:
European Master Human Rights and Democratisation
Resumo:
Este trabalho teve como objetivo principal relacionar a aplicação do Regulamento de desempenho energético dos edifícios de habitação com o conceito de habitação com necessidades quase nulas de energia. O trabalho começa por fazer uma comparação entre a metodologia geral do regulamento que vigora de momento e o seu predecessor de modo a perceber as alterações teóricas que estão subjacentes durante o processo de adaptação. É feito um estudo sobre os edifícios com necessidades quase nulas de energia e de várias estratégias passivas de serem utilizadas em edifícios capazes de conduzir à obtenção deste título. Por fim, realizou-se a aplicação do regulamento em vigor a um caso real e um estudo sobre efeito do aumento da área dos envidraçados tendo em conta a sua orientação, com o objetivo de aumentar a eficiência energética.
Resumo:
In this manuscript we tackle the problem of semidistributed user selection with distributed linear precoding for sum rate maximization in multiuser multicell systems. A set of adjacent base stations (BS) form a cluster in order to perform coordinated transmission to cell-edge users, and coordination is carried out through a central processing unit (CU). However, the message exchange between BSs and the CU is limited to scheduling control signaling and no user data or channel state information (CSI) exchange is allowed. In the considered multicell coordinated approach, each BS has its own set of cell-edge users and transmits only to one intended user while interference to non-intended users at other BSs is suppressed by signal steering (precoding). We use two distributed linear precoding schemes, Distributed Zero Forcing (DZF) and Distributed Virtual Signalto-Interference-plus-Noise Ratio (DVSINR). Considering multiple users per cell and the backhaul limitations, the BSs rely on local CSI to solve the user selection problem. First we investigate how the signal-to-noise-ratio (SNR) regime and the number of antennas at the BSs impact the effective channel gain (the magnitude of the channels after precoding) and its relationship with multiuser diversity. Considering that user selection must be based on the type of implemented precoding, we develop metrics of compatibility (estimations of the effective channel gains) that can be computed from local CSI at each BS and reported to the CU for scheduling decisions. Based on such metrics, we design user selection algorithms that can find a set of users that potentially maximizes the sum rate. Numerical results show the effectiveness of the proposed metrics and algorithms for different configurations of users and antennas at the base stations.
Resumo:
This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.
Resumo:
This paper addresses limit cycles and signal propagation in dynamical systems with backlash. The study follows the describing function (DF) method for approximate analysis of nonlinearities and generalizes it in the perspective of the fractional calculus. The concept of fractional order describing function (FDF) is illustrated and the results for several numerical experiments are analysed. FDF leads to a novel viewpoint for limit cycle signal propagation as time-space waves within system structure.
Resumo:
Gottfried Leibniz generalized the derivation and integration, extending the operators from integer up to real, or even complex, orders. It is presently recognized that the resulting models capture long term memory effects difficult to describe by classical tools. Leon Chua generalized the set of lumped electrical elements that provide the building blocks in mathematical models. His proposal of the memristor and of higher order elements broadened the scope of variables and relationships embedded in the development of models. This paper follows the two directions and proposes a new logical step, by generalizing the concept of junction. Classical junctions interconnect system elements using simple algebraic restrictions. Nevertheless, this simplistic approach may be misleading in the presence of unexpected dynamical phenomena and requires including additional “parasitic” elements. The novel γ-junction includes, as special cases, the standard series and parallel connections and allows a new degree of freedom when building models. The proposal motivates the search for experimental and real world manifestations of the abstract conjectures.
Resumo:
This study addresses the deoxyribonucleic acid (DNA) and proposes a procedure based on the association of statistics, information theory, signal processing, Fourier analysis and fractional calculus for describing fundamental characteristics of the DNA. In a first phase the 24 chromosomes of the Human are evaluated. In a second phase, 10 chromosomes for different species are also processed and the results compared. The results reveal invariance in the description and close resemblances with fractional Brownian motion.
Resumo:
A theory of free vibrations of discrete fractional order (FO) systems with a finite number of degrees of freedom (dof) is developed. A FO system with a finite number of dof is defined by means of three matrices: mass inertia, system rigidity and FO elements. By adopting a matrix formulation, a mathematical description of FO discrete system free vibrations is determined in the form of coupled fractional order differential equations (FODE). The corresponding solutions in analytical form, for the special case of the matrix of FO properties elements, are determined and expressed as a polynomial series along time. For the eigen characteristic numbers, the system eigen main coordinates and the independent eigen FO modes are determined. A generalized function of visoelastic creep FO dissipation of energy and generalized forces of system with no ideal visoelastic creep FO dissipation of energy for generalized coordinates are formulated. Extended Lagrange FODE of second kind, for FO system dynamics, are also introduced. Two examples of FO chain systems are analyzed and the corresponding eigen characteristic numbers determined. It is shown that the oscillatory phenomena of a FO mechanical chain have analogies to electrical FO circuits. A FO electrical resistor is introduced and its constitutive voltage–current is formulated. Also a function of thermal energy FO dissipation of a FO electrical relation is discussed.
Resumo:
This paper employs the Lyapunov direct method for the stability analysis of fractional order linear systems subject to input saturation. A new stability condition based on saturation function is adopted for estimating the domain of attraction via ellipsoid approach. To further improve this estimation, the auxiliary feedback is also supported by the concept of stability region. The advantages of the proposed method are twofold: (1) it is straightforward to handle the problem both in analysis and design because of using Lyapunov method, (2) the estimation leads to less conservative results. A numerical example illustrates the feasibility of the proposed method.
Resumo:
This paper characterizes four ‘fractal vegetables’: (i) cauliflower (brassica oleracea var. Botrytis); (ii) broccoli (brassica oleracea var. italica); (iii) round cabbage (brassica oleracea var. capitata) and (iv) Brussels sprout (brassica oleracea var. gemmifera), by means of electrical impedance spectroscopy and fractional calculus tools. Experimental data is approximated using fractional-order models and the corresponding parameters are determined with a genetic algorithm. The Havriliak-Negami five-parameter model fits well into the data, demonstrating that classical formulae can constitute simple and reliable models to characterize biological structures.
Resumo:
This paper studies the statistical distributions of worldwide earthquakes from year 1963 up to year 2012. A Cartesian grid, dividing Earth into geographic regions, is considered. Entropy and the Jensen–Shannon divergence are used to analyze and compare real-world data. Hierarchical clustering and multi-dimensional scaling techniques are adopted for data visualization. Entropy-based indices have the advantage of leading to a single parameter expressing the relationships between the seismic data. Classical and generalized (fractional) entropy and Jensen–Shannon divergence are tested. The generalized measures lead to a clear identification of patterns embedded in the data and contribute to better understand earthquake distributions.
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades due to the progress in the area of nonlinear dynamics. This article discusses several applications of fractional calculus in science and engineering, namely: the control of heat systems, the tuning of PID controllers based on fractional calculus concepts and the dynamics in hexapod locomotion.
Resumo:
First IFAC Workshop on Fractional Differentiation and Its Application - 19-21 July 2004, Enseirb, Bordeaux, France - FDA'04
Resumo:
First IFAC Workshop on Fractional Differentiation and Its Application - 19-21 July 2004, Enseirb, Bordeaux, France - FDA'04