931 resultados para Wireless communications systems
Resumo:
We consider a cooperative relaying network in which a source communicates with a group of users in the presence of one eavesdropper. We assume that there are no source-user links and the group of users receive only retransmitted signal from the relay. Whereas, the eavesdropper receives both the original and retransmitted signals. Under these assumptions, we exploit the user selection technique to enhance the secure performance. We first find the optimal power allocation strategy when the source has the full channel state information (CSI) of all links. We then evaluate the security level through: i) ergodic secrecy rate and ii) secrecy outage probability when having only the statistical knowledge of CSIs.
Resumo:
This paper studies the energy efficiency (EE) of a point-to-point rank-1 Ricean fading multiple-input-multiple-output (MIMO) channel. In particular, a tight lower bound and an asymptotic approximation for the EE of the considered MIMO system are presented, under the assumption that the channel is unknown at the transmitter and perfectly known at the receiver. Moreover, the effects of different system parameters, namely, transmit power, spectral efficiency (SE), and number of transmit and receive antennas, on the EE are analytically investigated. An important observation is that, in the high signal-to-noise ratio regime and with the other system parameters fixed, the optimal transmit power that maximizes the EE increases as the Ricean-K factor increases. On the contrary, the optimal SE and the optimal number of transmit antennas decrease as K increases.
Resumo:
A novel retrodirective array (RDA) architecture is proposed which utilises a special case spectral signature embedded within the data payload as pilot signals. With the help of a pair of phase-locked-loop (PLL) based phase conjugators (PCs) the RDA’s response to other unwanted and/or unfriendly interrogating signals can be disabled, leading to enhanced secrecy performance directly in the wireless physical layer. The effectiveness of the proposed RDA system is experimentally demonstrated.
Resumo:
In diesem Artikel werden zwei unterschiedliche Integrations- und Sensorkonzepte zur drahtlosen Erfassung der Belastung und Temperatur innerhalb eines Vollgummireifens für Flurförderzeuge beschrieben. Anhand der während des Fahrzeugbetriebs gesammelten Messdaten sollen Reifenschäden durch thermische Überlastung und Unfälle durch kippende Fahrzeuge vermieden werden.
Resumo:
The evolution of wireless communication systems leads to Dynamic Spectrum Allocation for Cognitive Radio, which requires reliable spectrum sensing techniques. Among the spectrum sensing methods proposed in the literature, those that exploit cyclostationary characteristics of radio signals are particularly suitable for communication environments with low signal-to-noise ratios, or with non-stationary noise. However, such methods have high computational complexity that directly raises the power consumption of devices which often have very stringent low-power requirements. We propose a strategy for cyclostationary spectrum sensing with reduced energy consumption. This strategy is based on the principle that p processors working at slower frequencies consume less power than a single processor for the same execution time. We devise a strict relation between the energy savings and common parallel system metrics. The results of simulations show that our strategy promises very significant savings in actual devices.
Resumo:
The communication in vehicular ad hoc networks (VANETs) is commonly divided in two scenarios, namely vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). Aiming at establishing secure communication against eavesdroppers, recent works have proposed the exchange of secret keys based on the variation in received signal strength (RSS). However, the performance of such scheme depends on the channel variation rate, being more appropriate for scenarios where the channel varies rapidly, as is usually the case with V2V communication. In the communication V2I, the channel commonly undergoes slow fading. In this work we propose the use of multiple antennas in order to artificially generate a fast fading channel so that the extraction of secret keys out of the RSS becomes feasible in a V2I scenario. Numerical analysis shows that the proposed model can outperform, in terms of secret bit extraction rate, a frequency hopping-based method proposed in the literature.
Resumo:
In this research work, a new routing protocol for Opportunistic Networks is presented. The proposed protocol is called PSONET (PSO for Opportunistic Networks) since the proposal uses a hybrid system composed of a Particle Swarm Optimization algorithm (PSO). The main motivation for using the PSO is to take advantage of its search based on individuals and their learning adaptation. The PSONET uses the Particle Swarm Optimization technique to drive the network traffic through of a good subset of forwarders messages. The PSONET analyzes network communication conditions, detecting whether each node has sparse or dense connections and thus make better decisions about routing messages. The PSONET protocol is compared with the Epidemic and PROPHET protocols in three different scenarios of mobility: a mobility model based in activities, which simulates the everyday life of people in their work activities, leisure and rest; a mobility model based on a community of people, which simulates a group of people in their communities, which eventually will contact other people who may or may not be part of your community, to exchange information; and a random mobility pattern, which simulates a scenario divided into communities where people choose a destination at random, and based on the restriction map, move to this destination using the shortest path. The simulation results, obtained through The ONE simulator, show that in scenarios where the mobility model based on a community of people and also where the mobility model is random, the PSONET protocol achieves a higher messages delivery rate and a lower replication messages compared with the Epidemic and PROPHET protocols.
Resumo:
The evolution of wireless communication systems leads to Dynamic Spectrum Allocation for Cognitive Radio, which requires reliable spectrum sensing techniques. Among the spectrum sensing methods proposed in the literature, those that exploit cyclostationary characteristics of radio signals are particularly suitable for communication environments with low signal-to-noise ratios, or with non-stationary noise. However, such methods have high computational complexity that directly raises the power consumption of devices which often have very stringent low-power requirements. We propose a strategy for cyclostationary spectrum sensing with reduced energy consumption. This strategy is based on the principle that p processors working at slower frequencies consume less power than a single processor for the same execution time. We devise a strict relation between the energy savings and common parallel system metrics. The results of simulations show that our strategy promises very significant savings in actual devices.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2015.
Resumo:
By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment.
Resumo:
Las teorías administrativas se han basado, casi sin excepción, en los fundamentos y los modelos de la ciencia clásica (particularmente, en los modelos de la física newtoniana). Sin embargo, las organizaciones actualmente se enfrentan a un mundo globalizado, plagado de información (y no necesariamente conocimiento), hiperconectado, dinámico y cargado de incertidumbre, por lo que muchas de las teorías pueden mostrar limitaciones para las organizaciones. Y quizá no por la estructura, la lógica o el alcance de las mismas, sino por la falta de criterios que justifiquen su aplicación. En muchos casos, las organizaciones siguen utilizando la intuición, las suposiciones y las verdades a medias en la toma de decisiones. Este panorama pone de manifiesto dos hechos: de un lado, la necesidad de buscar un método que permita comprender las situaciones de cada organización para apoyar la toma de decisiones. De otro lado, la necesidad de potenciar la intuición con modelos y técnicas no tradicionales (usualmente provenientes o inspiradas por la ingeniería). Este trabajo busca anticipar los pilares de un posible método que permita apoyar la toma de decisiones por medio de la simulación de modelos computacionales, utilizando las posibles interacciones entre: la administración basada en modelos, la ciencia computacional de la organización y la ingeniería emergente.