850 resultados para Visão computacional. FPGA. Sistemas orientados a plataformas


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work intends to show a new and few explored SLAM approach inside the simultaneous localization and mapping problem (SLAM). The purpose is to put a mobile robot to work in an indoor environment. The robot should map the environment and localize itself in the map. The robot used in the tests has an upward camera and encoders on the wheels. The landmarks in this built map are light splotches on the images of the camera caused by luminaries on the ceil. This work develops a solution based on Extended Kalman Filter to the SLAM problem using a developed observation model. Several developed tests and softwares to accomplish the SLAM experiments are shown in details

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Navigation based on visual feedback for robots, working in a closed environment, can be obtained settling a camera in each robot (local vision system). However, this solution requests a camera and capacity of local processing for each robot. When possible, a global vision system is a cheapest solution for this problem. In this case, one or a little amount of cameras, covering all the workspace, can be shared by the entire team of robots, saving the cost of a great amount of cameras and the associated processing hardware needed in a local vision system. This work presents the implementation and experimental results of a global vision system for mobile mini-robots, using robot soccer as test platform. The proposed vision system consists of a camera, a frame grabber and a computer (PC) for image processing. The PC is responsible for the team motion control, based on the visual feedback, sending commands to the robots through a radio link. In order for the system to be able to unequivocally recognize each robot, each one has a label on its top, consisting of two colored circles. Image processing algorithms were developed for the eficient computation, in real time, of all objects position (robot and ball) and orientation (robot). A great problem found was to label the color, in real time, of each colored point of the image, in time-varying illumination conditions. To overcome this problem, an automatic camera calibration, based on clustering K-means algorithm, was implemented. This method guarantees that similar pixels will be clustered around a unique color class. The obtained experimental results shown that the position and orientation of each robot can be obtained with a precision of few millimeters. The updating of the position and orientation was attained in real time, analyzing 30 frames per second

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of Progressing Cavity Pumps (PCPs) in artificial lift applications in low deep wells is becoming more common in the oil industry, mainly, due to its ability to pump heavy oils, produce oil with large concentrations of sand, besides present high efficiency when compared to other artificial lift methods. Although this system has been widely used as an oil lift method, few investigations about its hydrodynamic behavior are presented, either experimental or numeric. Therefore, in order to increase the knowledge about the BCP operational behavior, this work presents a novel computational model for the 3-D transient flow in progressing cavity pumps, which includes the relative motion between rotor and stator, using an element based finite volume method. The model developed is able to accurately predict the volumetric efficiency and viscous looses as well as to provide detailed information of pressure and velocity fields inside the pump. In order to predict PCP performance for low viscosity fluids, advanced turbulence models were used to treat, accurately, the turbulent effects on the flow, which allowed for obtaining results consistent with experimental values encountered in literature. In addition to the 3D computational model, a simplified model was developed, based on mass balance within cavities and on simplification on the momentum equations for fully developed flow along the seal region between cavities. This simplified model, based on previous approaches encountered in literature, has the ability to predict flow rate for a given differential pressure, presenting exactness and low CPU requirements, becoming an engineering tool for quick calculations and providing adequate results, almost real-time time. The results presented in this work consider a rigid stator PCP and the models developed were validated against experimental results from open literature. The results for the 3-D model showed to be sensitive to the mesh size, such that a numerical mesh refinement study is also presented. Regarding to the simplified model, some improvements were introduced in the calculation of the friction factor, allowing the application fo the model for low viscosity fluids, which was unsuccessful in models using similar approaches, presented in previous works

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pumping through progressing cavities system has been more and more employed in the petroleum industry. This occurs because of its capacity of elevation of highly viscous oils or fluids with great concentration of sand or other solid particles. A Progressing Cavity Pump (PCP) consists, basically, of a rotor - a metallic device similar to an eccentric screw, and a stator - a steel tube internally covered by a double helix, which may be rigid or deformable/elastomeric. In general, it is submitted to a combination of well pressure with the pressure generated by the pumping process itself. In elastomeric PCPs, this combined effort compresses the stator and generates, or enlarges, the clearance existing between the rotor and the stator, thus reducing the closing effect between their cavities. Such opening of the sealing region produces what is known as fluid slip or slippage, reducing the efficiency of the PCP pumping system. Therefore, this research aims to develop a transient three-dimensional computational model that, based on single-lobe PCP kinematics, is able to simulate the fluid-structure interaction that occurs in the interior of metallic and elastomeric PCPs. The main goal is to evaluate the dynamic characteristics of PCP s efficiency based on detailed and instantaneous information of velocity, pressure and deformation fields in their interior. To reach these goals (development and use of the model), it was also necessary the development of a methodology for generation of dynamic, mobile and deformable, computational meshes representing fluid and structural regions of a PCP. This additional intermediary step has been characterized as the biggest challenge for the elaboration and running of the computational model due to the complex kinematic and critical geometry of this type of pump (different helix angles between rotor and stator as well as large length scale aspect ratios). The processes of dynamic generation of meshes and of simultaneous evaluation of the deformations suffered by the elastomer are fulfilled through subroutines written in Fortan 90 language that dynamically interact with the CFX/ANSYS fluid dynamic software. Since a structural elastic linear model is employed to evaluate elastomer deformations, it is not necessary to use any CAE package for structural analysis. However, an initial proposal for dynamic simulation using hyperelastic models through ANSYS software is also presented in this research. Validation of the results produced with the present methodology (mesh generation, flow simulation in metallic PCPs and simulation of fluid-structure interaction in elastomeric PCPs) is obtained through comparison with experimental results reported by the literature. It is expected that the development and application of such a computational model may provide better details of the dynamics of the flow within metallic and elastomeric PCPs, so that better control systems may be implemented in the artificial elevation area by PCP

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electro-hydraulic servo-systems are widely employed in industrial applications such as robotic manipulators, active suspensions, precision machine tools and aerospace systems. They provide many advantages over electric motors, including high force to weight ratio, fast response time and compact size. However, precise control of electro-hydraulic systems, due to their inherent nonlinear characteristics, cannot be easily obtained with conventional linear controllers. Most flow control valves can also exhibit some hard nonlinearities such as deadzone due to valve spool overlap on the passage´s orifice of the fluid. This work describes the development of a nonlinear controller based on the feedback linearization method and including a fuzzy compensation scheme for an electro-hydraulic actuated system with unknown dead-band. Numerical results are presented in order to demonstrate the control system performance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crude oil is a complex liquid mixture of organic and inorganic compounds that are dominated by hydrocarbons. It is a mixture of alkanes from the simplest to more complex aromatic compounds that are present derivatives such as gasoline, diesel, alcohol, kerosene, naphtha, etc.. These derivatives are extracted from any oil, however, only with a very high quality, in other words, when the content of hydrocarbons of low molecular weight is high means that production of these compounds is feasible. The American Petroleum Institute (API) developed a classification system for the various types of oil. In Brazil, the quality of most of the oil taken from wells is very low, so it is necessary to generate new technology to develop best practices for refining in order to produce petroleum products of higher commercial value. Therefore, it is necessary to study the thermodynamic equilibrium properties of its derivative compounds of interest. This dissertation aims to determine vapor-liquid equilibrium (VLE) data for the systems Phenilcyclohexane - CO2, and Cyclohexane - Phenilcyclohexane - CO2 at high pressure and temperatures between 30 to 70oC. Furthermore, comparisons between measured VLE experimental data from this work and from the literature in relation to the Peng- Robinson molecular thermodynamic model, using a simulation program SPECS IVCSEP v5.60 and two adjustable interaction parameters, have been performed for modeling and simulation purposes. Finally, the developed apparatus for determination of phase equilibrium data at high pressures is presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The following work is to interpret and analyze the problem of induction under a vision founded on set theory and probability theory as a basis for solution of its negative philosophical implications related to the systems of inductive logic in general. Due to the importance of the problem and the relatively recent developments in these fields of knowledge (early 20th century), as well as the visible relations between them and the process of inductive inference, it has been opened a field of relatively unexplored and promising possibilities. The key point of the study consists in modeling the information acquisition process using concepts of set theory, followed by a treatment using probability theory. Throughout the study it was identified as a major obstacle to the probabilistic justification, both: the problem of defining the concept of probability and that of rationality, as well as the subtle connection between the two. This finding called for a greater care in choosing the criterion of rationality to be considered in order to facilitate the treatment of the problem through such specific situations, but without losing their original characteristics so that the conclusions can be extended to classic cases such as the question about the continuity of the sunrise

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho, através de simulações computacionais, identificamos os fenômenos físicos associados ao crescimento e a dinâmica de polímeros como sistemas complexos exibindo comportamentos não linearidades, caos, criticalidade auto-organizada, entre outros. No primeiro capítulo, iniciamos com uma breve introdução onde descrevemos alguns conceitos básicos importantes ao entendimento do nosso trabalho. O capítulo 2 consiste na descrição do nosso estudo da distribuição de segmentos num polímero ramificado. Baseado em cálculos semelhantes aos usados em cadeias poliméricas lineares, utilizamos o modelo de crescimento para polímeros ramificados (Branched Polymer Growth Model - BPGM) proposto por Lucena et al., e analisamos a distribuição de probabilidade dos monômeros num polímero ramificado em 2 dimensões, até então desconhecida. No capítulo seguinte estudamos a classe de universalidade dos polímeros ramificados gerados pelo BPGM. Utilizando simulações computacionais em 3 dimensões do modelo proposto por Lucena et al., calculamos algumas dimensões críticas (dimensões fractal, mínima e química) para tentar elucidar a questão da classe de universalidade. Ainda neste Capítulo, descrevemos um novo modelo para a simulação de polímeros ramificados que foi por nós desenvolvido de modo a poupar esforço computacional. Em seguida, no capítulo 4 estudamos o comportamento caótico do crescimento de polímeros gerados pelo BPGM. Partimos de polímeros criticamente organizados e utilizamos uma técnica muito semelhante aquela usada em transições de fase em Modelos de Ising para estudar propagação de danos chamada de Distância de Hamming. Vimos que a distância de Hamming para o caso dos polímeros ramificados se comporta como uma lei de potência, indicando um caráter não-extensivo na dinâmica de crescimento. No Capítulo 5 analisamos o movimento molecular de cadeias poliméricas na presença de obstáculos e de gradientes de potenciais. Usamos um modelo generalizado de reptação para estudar a difusão de polímeros lineares em meios desordenados. Investigamos a evolução temporal destas cadeias em redes quadradas e medimos os tempos característicos de transporte t. Finalizamos esta dissertação com um capítulo contendo a conclusão geral denoss o trabalho (Capítulo 6), mais dois apêndices (Apêndices A e B) contendo a fenomenologia básica para alguns conceitos que utilizaremos ao longo desta tese (Fractais e Percolação respectivamente) e um terceiro e ´ultimo apêndice (Apêndice C) contendo uma descrição de um programa de computador para simular o crescimentos de polímeros ramificados em uma rede quadrada

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-precision calculations of the correlation functions and order parameters were performed in order to investigate the critical properties of several two-dimensional ferro- magnetic systems: (i) the q-state Potts model; (ii) the Ashkin-Teller isotropic model; (iii) the spin-1 Ising model. We deduced exact relations connecting specific damages (the difference between two microscopic configurations of a model) and the above mentioned thermodynamic quanti- ties which permit its numerical calculation, by computer simulation and using any ergodic dynamics. The results obtained (critical temperature and exponents) reproduced all the known values, with an agreement up to several significant figures; of particular relevance were the estimates along the Baxter critical line (Ashkin-Teller model) where the exponents have a continuous variation. We also showed that this approach is less sensitive to the finite-size effects than the standard Monte-Carlo method. This analysis shows that the present approach produces equal or more accurate results, as compared to the usual Monte Carlo simulation, and can be useful to investigate these models in circumstances for which their behavior is not yet fully understood

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the new drugs launched into the market since 1980, up to 30% of them belong to the class of natural products or they have semisynthetic origin. Between 40-70% of the new chemical entities (or lead compounds) possess poor water solubility, which may impair their commercial use. An alternative for administration of poorly water-soluble drugs is their vehiculation into drug delivery systems like micelles, microemulsions, nanoparticles, liposomes, and cyclodextrin systems. In this work, microemulsion-based drug delivery systems were obtained using pharmaceutically acceptable components: a mixture Tween 80 and Span 20 in ratio 3:1 as surfactant, isopropyl mirystate or oleic acid as oil, bidistilled water, and ethanol, in some formulations, as cosurfactants. Self-Microemulsifying Drug Delivery Systems (SMEDDS) were also obtained using propylene glycol or sorbitol as cosurfactant. All formulations were characterized for rheological behavior, droplet size and electrical conductivity. The bioactive natural product trans-dehydrocrotonin, as well some extracts and fractions from Croton cajucara Benth (Euphorbiaceae), Anacardium occidentale L. (Anacardiaceae) e Phyllanthus amarus Schum. & Thonn. (Euphorbiaceae) specimens, were satisfactorily solubilized into microemulsions formulations. Meanwhile, two other natural products from Croton cajucara, trans-crotonin and acetyl aleuritolic acid, showed poor solubility in these formulations. The evaluation of the antioxidant capacity, by DPPH method, of plant extracts loaded into microemulsions evidenced the antioxidant activity of Phyllanthus amarus and Anacardium occidentale extracts. For Phyllanthus amarus extract, the use of microemulsions duplicated its antioxidant efficiency. A hydroalcoholic extract from Croton cajucara incorporated into a SMEDDS formulation showed bacteriostatic activity against colonies of Bacillus cereus and Escherichia coli bacteria. Additionally, Molecular Dynamics simulations were performed using micellar systems, for drug delivery systems, containing sugar-based surfactants, N-dodecylamino-1-deoxylactitol and N-dodecyl-D-lactosylamine. The computational simulations indicated that micellization process for N-dodecylamino-1- deoxylactitol is more favorable than N-dodecyl-D-lactosylamine system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context-aware applications are typically dynamic and use services provided by several sources, with different quality levels. Context information qualities are expressed in terms of Quality of Context (QoC) metadata, such as precision, correctness, refreshment, and resolution. On the other hand, service qualities are expressed via Quality of Services (QoS) metadata such as response time, availability and error rate. In order to assure that an application is using services and context information that meet its requirements, it is essential to continuously monitor the metadata. For this purpose, it is needed a QoS and QoC monitoring mechanism that meet the following requirements: (i) to support measurement and monitoring of QoS and QoC metadata; (ii) to support synchronous and asynchronous operation, thus enabling the application to periodically gather the monitored metadata and also to be asynchronously notified whenever a given metadata becomes available; (iii) to use ontologies to represent information in order to avoid ambiguous interpretation. This work presents QoMonitor, a module for QoS and QoC metadata monitoring that meets the abovementioned requirement. The architecture and implementation of QoMonitor are discussed. To support asynchronous communication QoMonitor uses two protocols: JMS and Light-PubSubHubbub. In order to illustrate QoMonitor in the development of ubiquitous application it was integrated to OpenCOPI (Open COntext Platform Integration), a Middleware platform that integrates several context provision middleware. To validate QoMonitor we used two applications as proofof- concept: an oil and gas monitoring application and a healthcare application. This work also presents a validation of QoMonitor in terms of performance both in synchronous and asynchronous requests

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aspect Oriented approaches associated to different activities of the software development process are, in general, independent and their models and artifacts are not aligned and inserted in a coherent process. In the model driven development, the various models and the correspondence between them are rigorously specified. With the integration of aspect oriented software development (DSOA) and model driven development (MDD) it is possible to automatically propagate models from one activity to another, avoiding the loss of information and important decisions established in each activity. This work presents MARISA-MDD, a strategy based on models that integrate aspect-oriented requirements, architecture and detailed design, using the languages AOV-graph, AspectualACME and aSideML, respectively. MARISA-MDD defines, for each activity, representative models (and corresponding metamodels) and a number of transformations between the models of each language. These transformations have been specified and implemented in ATL (Atlas Definition Language), in the Eclipse environment. MARISA-MDD allows the automatic propagation between AOV-graph, AspectualACME, and aSideML models. To validate the proposed approach two case studies, the Health Watcher and the Mobile Media have been used in the MARISA-MDD environment for the automatic generation of AspectualACME and aSideML models, from the AOV-graph model

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Middleware platforms have been widely used as an underlying infrastructure to the development of distributed applications. They provide distribution and heterogeneity transparency and a set of services that ease the construction of distributed applications. Nowadays, the middlewares accommodate an increasing variety of requirements to satisfy distinct application domains. This broad range of application requirements increases the complexity of the middleware, due to the introduction of many cross-cutting concerns in the architecture, which are not properly modularized by traditional programming techniques, resulting in a tangling and spread of theses concerns in the middleware code. The presence of these cross-cutting concerns limits the middleware scalability and aspect-oriented paradigm has been used successfully to improve the modularity, extensibility and customization capabilities of middleware. This work presents AO-OiL, an aspect-oriented (AO) middleware architecture, based on the AO middleware reference architecture. This middleware follows the philosophy that the middleware functionalities must be driven by the application requirements. AO-OiL consists in an AO refactoring of the OiL (Orb in Lua) middleware in order to separate basic and crosscutting concerns. The proposed architecture was implemented in Lua and RE-AspectLua. To evaluate the refactoring impact in the middleware architecture, this paper presents a comparative analysis of performance between AO-OiL and OiL

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To manage the complexity associated with the management of multimedia distributed systems, a solution must incorporate concepts of middleware in order to hide specific hardware and operating systems aspects. Applications in these systems can be implemented in different types of platforms, and the components of these systems must interact each with the other. Because of the variability of the state of the platforms implementation, a flexible approach should allow dynamic substitution of components in order to ensure the level of QoS of the running application . In this context, this work presents an approach in the layer of middleware that we are proposing for supporting dynamic substitution of components in the context the Cosmos framework , starting with the choice of target component, rising taking the decision, which, among components candidates will be chosen and concluding with the process defined for the exchange. The approach was defined considering the Cosmos QoS model and how it deals with dynamic reconfiguration