976 resultados para Ventricular Function, Right
Resumo:
Recently, the Tei-index, a noninvasive index that combines systolic and diastolic time intervals, has been proposed to assess global cardiac performance. However, the effects of isoflurane on the Tei-index have not been characterized. This study aimed at studying the effects of 1.0 minimal alveolar concentration isoflurane anesthesia on the pre-ejection period (PEP), left ventricular ejection time (LVET), PEP/LVET ratio, isovolumic relaxation time (IVRT), stroke index (SI), cardiac index (CI), heart rate (HR), and the Tei-index in healthy unpremedicated dogs. We observed significant increases in PEP, PEP/LVET ratio, IVRT, and TEI, whose maximal increases obtained throughout the study were 47%, 48%, 78%, and 56%, respectively. The LVET and HR did not change significantly, whereas the SI and CI decreased during anesthesia (29% and 26%, respectively). In conclusion, isoflurane produced direct effects on the Tei-index. The changes in systolic and diastolic parameters were supportive of this finding and were consistent with an overall impairment of left ventricular function during anesthesia.
Resumo:
Purpose - To evaluate the influence of sustained elevations of arterial pressure on dP/dt values, which the left ventricular end diastolic pressure was kept constant. Methods - Thirteen anesthetized dogs, mechanically ventilated and submitted to thoracotomy and pharmacological autonomic block (atropine - 0.5 mg/kg IV + oxprenolol - 3 mg/kg IV) were studied. The arterial pressure elevation was obtained by mechanical constriction of the descending thoracic aorta. Analyses were made in control (C) situation and after two successives increments of arterial pressure, sustained for 10min, called hypertension 1 (H1) and hypertension 2 (H2), respectively. The end diastolic left ventricular pressure was kept constant by utilization of a perfusion system connected to the left atria. Results - Heart rate did not change (C: 125 ± 13.9bpm; H1: 125 ± 13.5bpm; H2: 123 ± 14.1bpm; p > 0.05); the LVSP increased (C: 119 ± 8.1mmHg; H1: 142 ± 7.9mmHg; H2: 166 ± 7.7mmHg; p < 0.01); the AoDP increased (C: 89 ± 11.6mmHg; H1: 99 ± 9.5mmHg; H2: 120 ± 11.8mmHg; p < 0.01); the LVEDP (C: 6.2 ± 2.48mmHg; H1: 6.3 ± 2.43mmHg; H2: 6.1 ± 2.51mmHg; p > 0.05) and the dP/dt (C: 3068 ± 1057.1mmHg/s; 3112 ± 995.7mmHg/s; H2: 3086 ± 979.5mmHg/s; p > 0.05) did not change. Conclusion - dP/dt values are not influenced by a sustained elevation of arterial pressure, when the end diastolic left ventricular pressure is kept constant.
Resumo:
The aim of this study was to test the hypothesis that protein-calorie undernutrition decreases myocardial contractility jeopardizing ventricular function, and that ventricular dysfunction can be detected noninvasively. Five-month-old male Wistar-Kyoto rats were fed with regular rat chow ad libitum for 90 days (Control group, n = 14). A second group of rats received 50% of the amount of diet consumed by de control group (Food restricted group, n = 14). Global LV systolic function was evaluated in vivo, noninvasively, by transthoracic echocardiogram. After echocardiographic study, myocardial contractility was assessed in vitro in the isovolumetrically beating isolated heart in eight animals from each group (Langendorff preparation). The in vivo LV fractional shortening showed that food restriction depressed LV systolic function (p < 0.05). Myocardial contractility was impaired as assessed by the maximal rate of rise of LV pressure (+dP/dt), and developed pressure at diastolic pressure of 25 mmHg (p < 0.05). Furthermore, food restriction induced eccentric ventricular remodeling, and reduced myocardial elasticity and LV compliance (p < 0.05). In conclusion, food restriction causes systolic dysfunction probably due to myocardial contractility impairment and reduction of myocardial elasticity. © 2002 Elsevier B.V. All rights reserved.
Resumo:
Previous studies accomplished by our group suggest that tobacco smoke exposure results in cardiac remodeling, with progressive ventricular dysfunction. However, the mechanisms involved in this process are not known. Therefore, our laboratory has been trying to identify the potentials responsible mechanisms for cardiac remodeling induced by tobacco. The blood pressure increase, the renin-angiotensin system and the oxidative stress can modulate this process. On the other hand, the activation of MMP-2 or MMP-9, as well as lipid peroxidation, don't seem to participate of the morphologic and functional alterations induced by tobacco smoke exposure.
Resumo:
Background: To investigate the effect of lisinopril on cardiac remodeling induced by smoking. Material/Methods: Rats were allocated into 3 groups: group CON (n=8): control; group CSE (n=8): cigarette smoke exposure; group CSE-LIS (n=8): exposed to tobacco smoke and treated with lisinopril. Results: After 2 months, the tail systolic pressure was lower in CSE-LIS (CON=116 ±27 mm Hg, CSE=126±16, CSE-LIS=89±12; P<.001). CSE animals showed higher left ventricular systolic diameter (CON=8.25±2.16 mm/kg, CSE=11.5±1.3, CSE-LIS=9.27±2.00; P=.009) and myocyte cross-sectional area (CON=245±8 μm2, CSE=260±17, CSE-LIS=238±12; P=.01) than CON and CSE-LIS. The ejection fraction (CON =0.91±0.02, CSE=0.86±0.02, CSE-LIS=0.92±0.03; P=.002) and fractional shortening (CON=55.7±4.41%, CSE=48.7±3.43, CSE-LI=58.2±7.63; P=.006) were lower in CSE group than CON and CSE-LIS. CSE and CSE-LIS animals showed higher collagen amounts (CON=3.49±0.95%, CSE= 5.01±1.58, CSE-LIS=5.27±0.62; P=.009) than CON. CON group showed a higher connexin 43 amount in the intercalated disc (CON=3.70±0.38, CSE=2.13±0.53; CSE-LIS=2.17±0.73; P=.004) than CSE and CSE-LIS. There were no differences in IFN-g or TNF-a cardiac levels among the groups. Conclusions: Lisinopril attenuated both morphologic and functional abnormalities induced by exposure to tobacco smoke. In addition, this effect was associated with diminished blood pressure, but not alterations in connexin 43 distribution, cytokine production or collagen amount. © Med Sci Monit, 2010.
Resumo:
Aims The macrophage migration inhibitory factor (MIF) is an intracellular inhibitor of the central nervous system actions of angiotensin II on blood pressure. Considering that angiotensin II actions at the nucleus of the solitary tract are important for the maintenance of hypertension in spontaneously hypertensive rats (SHRs), we tested if increased MIF expression in the nucleus of the solitary tract of SHR alters the baseline high blood pressure in these rats.Methods and resultsEight-week-old SHRs or normotensive rats were microinjected with the vector AAV2-CBA-MIF into the nucleus of the solitary tract, resulting in MIF expression predominantly in neurons. Rats also underwent recordings of the mean arterial blood pressure (MAP) and heart rate (via telemetry devices implanted in the abdominal aorta), cardiac- and baroreflex function. Injections of AAV2-CBA-MIF into the nucleus of the solitary tract of SHRs produced significant decreases in the MAP, ranging from 10 to 20 mmHg, compared with age-matched SHRs that had received identical microinjections of the control vector AAV2-CBA-eGFP. This lowered MAP in SHRs was maintained through the end of the experiment at 31 days, and was associated with an improvement in baroreflex function to values observed in normotensive rats. In contrast to SHRs, similar increased MIF expression in the nucleus of the solitary tract of normotensive rats produced no changes in baseline MAP and baroreflex function.ConclusionThese results indicate that an increased expression of MIF within the nucleus of the solitary tract neurons of SHRs lowers blood pressure and restores baroreflex function. © 2012 Published on behalf of the European Society of Cardiology. All rights reserved.
Resumo:
BACKGROUND Pregnancy and arterial hypertension (AH) have a prohypertrophic effect on the heart. It is suspected that the 2 conditions combined cause disproportionate myocardial hypertrophy. We sought to evaluate myocardial hypertrophy (LVH) and left ventricular function in normotensive and hypertensive women in the presence or absence of pregnancy.METHODS This prospective cross-sectional study included 193 women divided into 4 groups: hypertensive pregnant (HTP; n = 57), normotensive pregnant (NTP; n = 47), hypertensive nonpregnant (HTNP; n = 41), and normotensive nonpregnant (NTNP; n = 48). After clinical and echocardiographic evaluation, the variables were analyzed using 2-way analysis of variance with pregnancy and hypertension as factors. Left ventricular mass (LVM) was compared using nonparametric analysis of variance and Dunn′s test. Predictors of LVH and diastolic dysfunction were analyzed using logistic regression (significance level, P < 0.05).RESULTS Myocardial hypertrophy was independently associated with hypertension (odds ratio (OR) = 11.1, 95% confidence interval (CI) = 3.2-38.5; P < 0.001) and pregnancy (OR = 6.1, 95% CI = 2.6-14.3; P < 0.001) in a model adjusted for age and body mass index. Nonpregnant women were at greater risk of LVH in the presence of AH (OR = 25.3, 95% CI = 3.15-203.5; P = 0.002). The risk was additionally increased in hypertensive women during pregnancy (OR = 4.3, 95% CI = 1.7-10.9; P = 0.002) in the model adjusted for stroke volume and antihypertensive medication. Although none of the NTNP women presented with diastolic dysfunction, it was observed in 2% of the NTP women, 29% of the HTNP women, and 42% of the HTP women (P < 0.05).CONCLUSIONS Hypertension and pregnancy have a synergistic effect on ventricular remodeling, which elevates a woman's risk of myocardial hypertrophy. © 2013 © American Journal of Hypertension, Ltd 2013. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: The effects of modern therapy on functional recovery after acute myocardial infarction (AMI) are unknown.Objectives: To evaluate the predictors of systolic functional recovery after anterior AMI in patients undergoing modern therapy (reperfusion, aggressive platelet antiaggregant therapy, angiotensin-converting enzyme inhibitors and beta-blockers).Methods: A total of 94 consecutive patients with AMI with ST-segment elevation were enrolled. Echocardiograms were performed during the in-hospital phase and after 6 months. Systolic dysfunction was defined as ejection fraction value < 50%.Results: In the initial echocardiogram, 64% of patients had systolic dysfunction. Patients with ventricular dysfunction had greater infarct size, assessed by the measurement of total and isoenzyme MB creatine kinase enzymes, than patients without dysfunction. Additionally, 24.5% of patients that initially had systolic dysfunction showed recovery within 6 months after AMI. Patients who recovered ventricular function had smaller infarct sizes, but larger values of ejection fraction and E-wave deceleration time than patients without recovery. At the multivariate analysis, it can be observed that infarct size was the only independent predictor of functional recovery after 6 months of AMI when adjusted for age, gender, ejection fraction and E-wave deceleration time.Conclusion: In spite of aggressive treatment, systolic ventricular dysfunction remains a frequent event after the anterior myocardial infarction. Additionally, 25% of patients show functional recovery. Finally, infarct size was the only significant predictor of functional recovery after six months of acute myocardial infarction.
Resumo:
High intensity systematic physical training leads to myocardial morphophysiological adaptations. The goal of this study was to investigate if differences in training were correlated with differences in cardiac sympathetic activity.58 males (19-47 years), were divided into three groups: strength group (SG), (20 bodybuilders), endurance group (EG), (20 endurance athletes), and a control group (CG) comprising 18 healthy non-athletes. Cardiac sympathetic innervation was assessed by planar myocardial I-123-metaiodobenzylguanidine scintigraphy using the early and late heart to mediastinal (H/M) ratio, and washout rate (WR).Left ventricular mass index was significantly higher both in SG (P < .001) and EG (P = .001) compared to CG without a statistical significant difference between SG and EG (P = .417). The relative wall thickness was significantly higher in SG compared to CG (P < .001). Both left ventricular ejection fraction and the peak filling rate showed no significant difference between the groups. Resting heart rate was significantly lower in EG compared to CG (P = .006) and SG (P = .002). The late H/M ratio in CG was significantly higher compared to the late H/M for SG (P = .003) and EG (P = .004). However, WR showed no difference between the groups. There was no significant correlation between the parameters of myocardial sympathetic innervation and parameters of left ventricular function.Strength training resulted in a significant increase in cardiac dimensions. Both strength and endurance training seem to cause a reduction in myocardial sympathetic drive. However, myocardial morphological and functional adaptations to training were not correlated with myocardial sympathetic activity.