940 resultados para Vector quantization
Resumo:
this paper quantifies effects of using three different pulse width modulation (PWM) schemes on the losses in the inverter and induction motor of a 1 kW drive. Direct measurements of losses have been made with a calorimeter. Results show that for the inverter, discontinuous PWM excitation reduces losses by up to 15% compared to sine and symmetrical space vector PWM methods. However, at a low modulation index the greater harmonic content with discontinuous PWM increased motor losses by nearly 20%. This study demonstrates the importance of careful choice of modulation scheme to achieve high overall drive efficiency. © 2005 IEEE.
Resumo:
An implementation of the inverse vector Jiles-Atherton model for the solution of non-linear hysteretic finite element problems is presented. The implementation applies the fixed point method with differential reluctivity values obtained from the Jiles-Atherton model. Differential reluctivities are usually computed using numerical differentiation, which is ill-posed and amplifies small perturbations causing large sudden increases or decreases of differential reluctivity values, which may cause numerical problems. A rule based algorithm for conditioning differential reluctivity values is presented. Unwanted perturbations on the computed differential reluctivity values are eliminated or reduced with the aim to guarantee convergence. Details of the algorithm are presented together with an evaluation of the algorithm by a numerical example. The algorithm is shown to guarantee convergence, although the rate of convergence depends on the choice of algorithm parameters. © 2011 IEEE.
Resumo:
BACKGROUND: Neurotrophin-4 (NT-4) can promote neuronal growth, development, differentiation, maturation, and survival. NT-4 can also improve recovery and regeneration of injured neurons, but cannot pass through the blood-brain barrier, which limits its ac
Resumo:
Spread Transform (ST) is a quantization watermarking algorithm in which vectors of the wavelet coefficients of a host work are quantized, using one of two dithered quantizers, to embed hidden information bits; Loo had some success in applying such a scheme to still images. We extend ST to the video watermarking problem. Visibility considerations require that each spreading vector refer to corresponding pixels in each of several frames, that is, a multi-frame embedding approach. Use of the hierarchical complex wavelet transform (CWT) for a visual mask reduces computation and improves robustness to jitter and valumetric scaling. We present a method of recovering temporal synchronization at the detector, and give initial results demonstrating the robustness and capacity of the scheme.
Resumo:
The paper presents a vector model for a Brushless Doubly-Fed Machine (BDFM). The BDFM has 4 and 8 pole stator windings and a nested-loop rotor cage. The rotor cage has six nests equally spaced around the circumference and each nest comprises three loops. All the rotor loops are short circuited via a common end-ring at one end. The vector model is derived based on the electrical equations of the machine and appropriate vector transformations. In contrast to the stator, there is no three phase circuit in the rotor. Therefore, the vector transformations suitable for three phase circuits can not be utilised for the rotor circuit. A new vector transformation is employed for the rotor circuit quantities. The approach presented in this paper can be extended for a BDFM with any stator poles combination and any number of loops per nest. Simulation results from the model implemented in Simulink are presented. © 2008 IEEE.
Resumo:
The paper presents the vector model of the Brushless Doubly-Fed Machine (BDFM) in the rotor flux oriented reference frame. The rotor flux oriented reference frame is well known in the standard AC machines analysis and control. Similar benefits can be sought by employing this method for the BDFM The vector model is implemented in MATLAB/SIVIULINK to simulate the BDFM dynamic performance under different operating conditions. The predictions from the vector model are compared to those from the coupled circuit model in simulation. The results are shown for the cascade mode of operation. © 2008 IEEE.
Resumo:
This paper proposed a novel control scheme for operating the Single Phase Brushless Doubly-Fed Machine (SPB) based on Stator-Flux-Oriented control algorithm. The SPB is a new type of Brushless Doubly-Fed Machine (BDFM) which shows a potential in applications which require adjustable speed such as Wind Power generation and speed adjustable Drive. The SPB can be applied to single-phase power system and the lower cost of the SPB makes the SPB suitable for low-rated power conversion applications. This paper develops the control scheme of the SPB with explicit mathematical analysis and block diagram of the controller. Experimental verification is also given. © 2011 IEEE.
Resumo:
This paper describes a structured SVM framework suitable for noise-robust medium/large vocabulary speech recognition. Several theoretical and practical extensions to previous work on small vocabulary tasks are detailed. The joint feature space based on word models is extended to allow context-dependent triphone models to be used. By interpreting the structured SVM as a large margin log-linear model, illustrates that there is an implicit assumption that the prior of the discriminative parameter is a zero mean Gaussian. However, depending on the definition of likelihood feature space, a non-zero prior may be more appropriate. A general Gaussian prior is incorporated into the large margin training criterion in a form that allows the cutting plan algorithm to be directly applied. To further speed up the training process, 1-slack algorithm, caching competing hypothesis and parallelization strategies are also proposed. The performance of structured SVMs is evaluated on noise corrupted medium vocabulary speech recognition task: AURORA 4. © 2011 IEEE.
Resumo:
We use laser beams with radial and azimuthal polarization to optically trap carbon nanotubes. We measure force constants and trap parameters as a function of power showing improved axial trapping efficiency with respect to linearly polarized beams. The analysis of the thermal fluctuations highlights a significant change in the optical trapping potential when using cylindrical vector beams. This enables the use of polarization states to shape optical traps according to the particle geometry, as well as paving the way to nanoprobe-based photonic force microscopy with increased performance compared to a standard linearly polarized configuration. © 2012 Optical Society of America.