986 resultados para Vascular wall
Resumo:
Hybrid frictional-kinetic equations are used to predict the velocity, grain temperature, and stress fields in hoppers. A suitable choice of dimensionless variables permits the pseudo-thermal energy balance to be decoupled from the momentum balance. These balances contain a small parameter, which is analogous to a reciprocal Reynolds number. Hence an approximate semi-analytical solution is constructed using perturbation methods. The energy balance is solved using the method of matched asymptotic expansions. The effect of heat conduction is confined to a very thin boundary layer near the exit, where it causes a marginal change in the temperature. Outside this layer, the temperature T increases rapidly as the radial coordinate r decreases. In particular, the conduction-free energy balance yields an asymptotic solution, valid for small values of r, of the form T proportional r-4. There is a corresponding increase in the kinetic stresses, which attain their maximum values at the hopper exit. The momentum balance is solved by a regular perturbation method. The contribution of the kinetic stresses is important only in a small region near the exit, where the frictional stresses tend to zero. Therefore, the discharge rate is only about 2.3% lower than the frictional value, for typical parameter values. As in the frictional case, the discharge rate for deep hoppers is found to be independent of the head of material.
Resumo:
There is a widespread reporting habit of combining the outcomes for patients with rest pain (Fontaine III) and tissue loss (Fontaine IV) under the single category of critical leg ischaemia (CLI). This study focused on patients with ischaemic tissue loss treated with infrainguinal bypass surgery (IBS). All patients included in the study were treated at Helsinki University Central Hospital in 2000-2007. First, ulcer healing time after IBS and factors influencing healing time were prospectively assessed in 2 studies including 148 and 110 patients, respectively. Second,the results of redo IBS were retrospectively evaluated in 593 patients undergoing primary IBS for CLI with tissue loss . Third,long-term outcome were retrospectively analysed in 636 patients who underwent IBS for CLI with tissue loss . Fourth, the outcome of IBS was retrospectively compared with endovascular treatment (PTA) of the infrapopliteal arteries in 1023 CLI patients. Fifth, the influence multidrug resistant Pseudomans aeruginosa (MDR Pa) bacteria contamination in CLI patients treated with IBS was retropectively assessed. Sixty-four patients with positive MDR Pa -culture were matched with 64 MDR Pa - negative controls. Complete ulcer healing rate, including the ischemic ulcers and incisional wounds, was 40% at 6 months after IBS and 75% at one year. Diabetes was a risk factor for prolonged complete ulcer healing time. Ischaemic tissue lesions located in mid-and hindfoot healed poorly. At one year after IBS 50% of the patients were alive with salvaged leg and completely healed ulcers. The absence of gap between tertiary graft patency and leg salvage rates indicates the importance of a patent infrainguinal graft to save a leg with ischaemic tissue loss. Long-term survival for patients with ischaemic tissue loss was poor, 38% at 5 years. Only 30% of the patients were alive without amputation at 5 years. Several of the patient comorbidities increased independently the mortality risk; coronary artery disease, renal insufficiency, chronic obstructive lung disease and high age. When both PTA and bypass is feasible, infrapopliteal PTA as a first-line strategy is expected to achieve similar long-term results to bypass surgery in CLI when redo surgery is actively utilized. MDR Pa in a patient with CLI should be considered as a serious event with increased risk of early major amputation or death. Conclusion: Despite a successful infrainguinal bypass healing of the ischaemic ulcers and incisional wounds ulcer healing is a slow process especially in diabetics. Bypass surgery and PTA improve the outcome of the ischaemic leg but the mortality rate of the patients is high due to their severe comorbidities.
Resumo:
Simple expansion chambers, the simplest of the muffler configurations, have very limited practical application due to the presence of periodic troughs in the transmission loss spectrum which drastically lower the overall transmission loss of the muffler. Tuned extended inlet and outlet can be designed to nullify three-fourths of these troughs, making use of the plane wave theory. These cancellations would not occur unless one altered the geometric lengths for the extended tube in order to incorporate the effect of evanescent higher-order modes (multidimensional effect) through end corrections or lumped inertance approximation at the area discontinuities or junctions. End corrections of the extended inlet and outlet have been studied by several researchers. However the effect of wall thickness of the inlet/outlet duct on end correction has not been studied explicitly. This has significant effect on the tuning of an extended inlet/outlet expansion chamber. It is investigated here experimentally as well as numerically (through use of 3-D FEM software) for stationary medium. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
Soft tissue sarcomas are malignant tumours of mesenchymal origin. Because of infiltrative growth pattern, simple enucleation of the tumour causes a high rate of local recurrence. Instead, these tumours should be resected with a rim of normal tissue around the tumour. Data on the adequate margin width are scarce. At Helsinki University Central Hospital (HUCH) a multidisciplinary treatment group started in 1987. Surgical resection with a wide margin (2.5 cm) is the primary aim. In case of narrower margin radiation therapy is necessary. The role of adjuvant chemotherapy remains unclear. Our aims were to study local control by the surgical margin and to develop a new prognostic tool to aid decision-making on which patients should receive adjuvant chemotherapy. Patients with soft tissue sarcoma of the extremity or the trunk wall referred to HUCH during 1987-2002 form material in Studies I and II. External validation material comes from the Lund university sarcoma registry. The smallest surgical margin of at least 2.5 centimetres yielded local control of 89 per cent at five years. Amputation rate was 9 per cent. The proposed prognostic model with necrosis, vascular invasion, size on a continuous scale, depth, location and grade worked well both in Helsinki material and in the validation material, and it also showed good calibration. Based on the present study, we recommend the smallest surgical margin of 2-3 centimetres in soft tissue sarcoma irrespective of grade. Improvement in local control was present but modest in margins wider than 1 centimetre. In cases where gaining a wider margin would lead to a considerable loss of function, smaller margin is to be considered combined to radiation therapy. Patients treated with inadequate margins should be offered radiation therapy irrespective of tumour grade. Our new prognostic model to estimate 10-year survival probability in patients with soft tissue sarcoma of the extremities or trunk wall showed good dicscrimination and calibration. For time being the prognostic model is available for scientific use and further validations. In the future, the model may aid in clinical decision-making. For operable osteosarcoma, neoadjuvant multidrug chemotherapy followed by delayed surgery and multidrug adjuvant chemotherapy is the treatment of choice. Overall survival rates at five years are approximately 75 per cent in modern trials with classical osteosarcoma. All patients diagnosed and reported to the Finnish Cancer Registry with osteosarcoma in Finland during 1971-2005 form the material in Studies III and IV. Limb-salvage rate increased from 23 per cent to 78 per cent during 1971-2005. The 10-year sarcoma-specific survival for the whole study population improved from 32 per cent to 62 per cent. It was 75 per cent for patients with a local high-grade osteosarcoma of the extremity diagnosed during 1991-2005. This study outlines the improved prognosis of osteosarcoma patients in Finland with modern chemotherapy. The 10-year survival rates are good also in an international scale. Nonetheless, their limb-salvage rate remains inferior to those seen for highly selected patient series. Overall, the centralisation of osteosarcoma treatment would most likely improve both survival and limb-salvage rates even further.
Resumo:
Test results of 12 reinforced concrete (RC) wall panels with openings are presented. The panels have been subjected to in-plane vertical loads applied at an eccentricity to represent possible accidental eccentricity that occurs in practice due to constructional imperfections. The 12 specimens consist of two identical groups of six panels each. One group of panels is tested in one-way in-plane action (i.e., supported at top and bottom edges against lateral displacement). The second group of panels is tested in two-way in-plane action (i.e., supported on all the four edges against lateral displacement). Openings in the panels represent typical door and window openings. Cracking loads, ultimate loads, crack patterns, and lateral deflections of the panels are studied. Empirical methods have been developed for the prediction of ultimate load. Also, lateral deflections, cracking loads, and ultimate loads of identical loads tested under one-way and two-way action are compared.
Resumo:
Test results of 24 reinforced concrete wall panels in two-way action (i.e., supported on all the four sides) and subjected to in-plane vertical load are presented. The load is applied at an eccentricity to represent possible accidental eccentricity that occurs in practice due to constructional imperfections. Influences of aspect ratio, thinness ratio, slendemess ratio, vertical steel, and horizontal steel on the ultimate load are studied. Two equations are proposed to predict the ultimate load carried by the panels. The first equation is empirical and is arrived at from trial and error fitting with test data. The second equation is semi-empirical and is developed from a modification of the buckling strength of thin rectangular plates. Both the equations are formulated so as to give a safe prediction of a large portion of ultimate strength test results. Also, ultimate load cracking load and lateral deflections of identical panels in two-way action (all four sides supported) and oneway action (top and bottom sides only supported) are compared.
Resumo:
Moonlighting functions have been described for several proteins previously thought to localize exclusively in the cytoplasm of bacterial or eukaryotic cells. Moonlighting proteins usually perform conserved functions, e. g. in glycolysis or as chaperonins, and their traditional and moonlighting function(s) usually localize to different cell compartments. The most characterized moonlighting proteins in Grampositive bacteria are the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which function in bacteria-host interactions, e. g. as adhesins or plasminogen receptors. Research on bacterial moonlighting proteins has focused on Gram-positive bacterial pathogens, where many of their functions have been associated with bacterial virulence. In this thesis work I show that also species of the genus Lactobacillus have moonlighting proteins that carry out functions earlier associated with bacterial virulence only. I identified enolase, GAPDH, glutamine synthetase (GS), and glucose-6-phosphate isomerase (GPI) as moonlighting proteins of Lactobacillus crispatus strain ST1 and demonstrated that they are associated with cell surface and easily released from the cell surface into incubation buffer. I also showed that these lactobacillar proteins moonlight either as adhesins with affinity for basement membrane and extracellular matrix proteins or as plasminogen receptors. The mechanisms of surface translocation and anchoring of bacterial moonlighting proteins have remained enigmatic. In this work, the surface localization of enolase, GAPDH, GS and GPI was shown to depend on environmental factors. The members of the genus Lactobacillus are fermentative organisms that lower the ambient pH by producing lactic acid. At acidic pH enolase, GAPDH, GS and GPI were associated with the cell surface, whereas at neutral pH they were released into the buffer. The release did not involve de novo protein synthesis. I showed that purified recombinant His6-enolase, His6-GAPDH, His6-GS and His6-GPI reassociate with cell wall and bind in vitro to lipoteichoic acids at acidic pH. The in-vitro binding of these proteins localizes to cell division septa and cell poles. I also show that the release of moonlighting proteins is enhanced in the presence of cathelicidin LL- 37, which is an antimicrobial peptide and a central part of the innate immunity defence. I found that the LL-37-induced detachment of moonlighting proteins from cell surface is associated with cell wall permeabilization by LL-37. The results in this thesis work are compatible with the hypothesis that the moonlighting proteins of L. crispatus associate to the cell wall via electrostatic or ionic interactions and that they are released into surroundings in stress conditions. Their surface translocation is, at least in part, a result from their release from dead or permeabilized cells and subsequent reassociation onto the cell wall. The results of this thesis show that lactobacillar cells rapidly change their surface architecture in response to environmental factors and that these changes influence bacterial interactions with the host.
Resumo:
Steady two-dimensional and axisymmetric compressible nonsimilar laminar boundary-layer flows with non-uniform slot injection (or suction) and non-uniform wall enthalpy have been studied from the starting point of the streamwise co-ordinate to the exact point of separation. The effect of different free stream Mach number has also been considered. The finite discontinuities arising at the leading and trailing edges of the slot for the uniform slot injection (suction) or wall enthalpy are removed by choosing appropriate non-uniform slot injection (suction) or wall enthalpy. The difficulties arising at the starting point of the streamwise co-ordinate, at the edges of the slot and at the point of separation are overcome by applying the method of quasilinear implicit finite difference scheme with an appropriate selection of finer step size along the streamwise direction. It is observed that the non-uniform slot injection moves the point of separation downstream but the non-uniform slot suction has the reverse effect. The increase of Mach number shifts the point of separation upstream due to the adverse pressure gradient. The increase of total enthalpy at the wall causes the separation to occur earlier while cooling delays it. The non-uniform total enthalpy at the wall (i.e., the cooling or heating of the wall in a slot) along the streamwise co-ordinate has very little effect on the skin friction and thus on the point of separation.
Resumo:
Wave propagation in fluid?filled/submerged tubes is of interest in large HVAC ducts, and also in understanding and interpreting the experimental results obtained from fluid?filled impedance tubes. Based on the closed form analytical solution of the coupled wave equations, an eigenequation, which is the determinant of an 8×8 matrix, is derived and solved to obtain the axial wave number of the lowest?order longitudinal modes for cylindrical ducts of various diameter and wall thickness. The dispersion behavior of the wave motion is analyzed. It is observed that the larger the diameter of the duct and/or the smaller its wall thickness, the more flexible the impedance tube leading to more coupling between the waves in the elastic media. Also, it is shown that the wave motion in water?filled ducts submerged in water exhibits anomalous dispersion behavior. The axial attenuation characteristics of plane waves along water?filled tubes submerged in water or air are also investigated. Finally, investigations on the sound intensity level difference characteristics of the wall of the air?filled tubes are reported.
Resumo:
In an earlier work, we had proposed a two-band, non-grey radiative transfer model for heat transfer in forehearths with simultaneous optically thick and thin approximations for molten glass interiors and at boundaries. Here using the same model, the radiative interaction of the top-crown and bottom-refractory walls with interior layers of shallow molten glass is studied by varying the wall emissivities. The forehearth exit temperature profiles for higher wall emissivities (0.9) show better conditioning of the glass for white flint glasses (optically thin).
Resumo:
We derive boundary conditions at a rigid wall for a granular material comprising rough, inelastic particles. Our analysis is confined to the rapid flow, or granular gas, regime in which grains interact by impulsive collisions. We use the Chapman-Enskog expansion in the kinetic theory of dense gases, extended for inelastic and rough particles, to determine the relevant fluxes to the wall. As in previous studies, we assume that the particles are spheres, and that the wall is corrugated by hemispheres rigidly attached to it. Collisions between the particles and the wall hemispheres are characterized by coefficients of restitution and roughness. We derive boundary conditions for the two limiting cases of nearly smooth and nearly perfectly rough spheres, as a hydrodynamic description of granular gases comprising rough spheres is appropriate only in these limits. The results are illustrated by applying the equations of motion and boundary conditions to the problem of plane Couette flow.
Resumo:
Single-wall carbon nanotubes (SWNTs) are fascinating systems exhibiting many novel physical properties. In this paper, we give a brief review of the structural, electronic, vibrational, and mechanical properties of carbon nanotubes. In situ resonance Raman scattering of SWNTs investigated under electrochemical biasing demonstrates that the intensity of the radial breathing mode varies significantly in a nonmonotonic manner as a function of the cathodic bias voltage, but does not change appreciably under anodic bias. These results can be quantitatively understood in terms of the changes in the energy gaps between the 1 D van Hove singularities in the electron density of states, arising possibly due to the alterations in the overlap integral of pi bonds between the p-orbitals of the adjacent carbon atoms. In the second part of this paper, we review our high-pressure X-ray diffraction results, which show that the triangular lattice of the carbon nanotube bundles continues to persist up to similar to10 GPa. The lattice is seen to relax just before the phase transformation, which is observed at similar to10 GPa. Further, our results display the reversibility of the 2D lattice symmetry even after compression up to 13 GPa well beyond the 5 GPa value observed recently. These experimental results explicitly validate the predicted remarkable mechanical resilience of the nanotubes.
Resumo:
: In the presence of pseudo-static seismic forces, passive earth pressure coefficients behind retaining walls were generated using the limit equilibrium method of analysis for the negative wall friction angle case (i.e., the wall moves upwards relative to the backfill) with logarithmic spirals as rupture surfaces. Individual density, surcharge, and cohesion components were computed to obtain the total minimum seismic passive resistance in soils by adding together the individual minimum components. The effect of variation in wall batter angle, ground slope, wall friction angle, soil friction angle, and horizontal and vertical seismic accelerations on seismic passive earth pressures are considered in the analysis. The seismic passive earth pressure coefficients are found to be highly sensitive to the seismic acceleration coefficients both in the horizontal and the vertical directions. The results are presented in graphical and tabular formats.