976 resultados para Variational approximation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A stochastic variational method is applied to calculate the binding energies and root-mean-square radii of 2, 3 and 4 alpha particles using an S-wave Ali-Bodmer potential. The results agree with other calculations. We discuss the application of the present method to study the universality in weakly-bound three and four-body systems in the context of ultracold atomic traps.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We introduce a generalization of the relativistic eikonal amplitude originally developed to describe elastic scattering between structureless particles. The coherent and incoherent proton-nucleus scattering processes are analysed and closed-form expressions for elastic and inelastic amplitudes are derived. In particular, for the incoherent case, an energy-conserving version of Glauber's theory is obtained.
Resumo:
Complex Kohn variational principle is applied to the numerical solution of the fully off-shell Lippmann-Schwinger equation for nucleon-nucleon scattering for various partial waves including the coupled S-3(1), D-3(1), channel. Analytic expressions are obtained for all the integrals in the method for a suitable choice of expansion functions. Calculations with the partial waves S-1(0), P-1(1), D-1(2), and S-3(1)-D-3(1) of the Reid soft core potential show that the method converges faster than other solution schemes not only for the phase shift but also for the off-shell t matrix elements. We also show that it is trivial to modify this variational principle in order to make it suitable for bound-state calculation. The bound-state approach is illustrated for the S-3(1)-D-3(1) channel of the Reid soft-core potential for calculating the deuteron binding, wave function, and the D state asymptotic parameters. (c) 1995 Academic Press, Inc.
Resumo:
We present results for low- and medium-energy elastic and capture cross sections for positronium-atom-alkali-ion scattering using the coupled static close-coupling approximation.
Resumo:
It is argued, contrary to various claims and expectations, that the phase shifts calculated via variational principles for the t matrix involving complex algebra may exhibit anomalous behavior. These anomalies are numerically demonstrated in the case of the complex Kohn and the Newton variational principles for the t matrix and are expected to appear for other similar variational principles for the t matrix, such as the Takatsuka-McKoy variational principle.
Resumo:
An analytical approximate method for the Dirac equation with confining power law scalar plus vector potentials, applicable to the problem of the relativistic quark confinement, is presented. The method consists in an improved version of a saddle-point variational approach and it is applied to the fundamental state of massless single quarks for some especial cases of physical interest. Our treatment emphasizes aspects such as the quantum-mechanical relativistic Virial theorem, the saddle-point character of the critical point of the expectation value of the total energy, as well as the Klein paradox and the behaviour of the saddle-point variational energies and wave functions.
Resumo:
Within the approach of supersymmetric quantum mechanics associated with the variational method a recipe to construct the superpotential of three-dimensional confined potentials in general is proposed. To illustrate the construction, the energies of the harmonic oscillator and the Hulthen potential, both confined in three dimensions are evaluated. Comparison with the corresponding results of other approximative and exact numerical results is presented. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The unitary pole approximation is used to construct a separable representation for a potential U which consists of a Coulomb repulsion plus an attractive potential of the Yamaguchi type. The exact bound-state wave function is employed. U is chosen as the potential which binds the proton in the 1d5/2 single-particle orbit in F-17. Using the separable representation derived for U, and assuming a separable Yamaguchi potential to describe the 1d5/2 neutron in O-17, the energies and wave functions of the ground state (1+) and the lowest 0+ state of F-18 are calculated in the Gore-plus-two-nucleons model solving the Faddeev equations.
Resumo:
The formalism of supersymmetric quantum mechanics provides us with the eigenfunctions to be used in the variational method to obtain the eigenvalues for the Hulthen potential.