389 resultados para Twisted Gastrulation
Resumo:
Catenins have diverse and powerful roles in embryogenesis, homeostasis or disease progression, as best exemplified by the well-known beta-catenin. The less studied delta-catenin likewise contains a central Armadillo-domain. In common with other p120 sub-class members, it acts in a variety of intracellular compartments and modulates cadherin stability, small GTPase activities and gene transcription. In mammals, delta-catenin exhibits neural specific expression, with its knock-out in mice correspondingly producing cognitive defects and synaptic dysfunctions. My work instead employed the amphibian, Xenopus laevis, to explore delta-catenin’s physiological functions in a distinct vertebrate system. Initial isolation and characterization indicated delta-catenin’s expression in Xenopus. Unlike the pattern observed for mammals, delta-catenin was detected in most adult Xenopus tissues, although enriched in embryonic structures of neural fate as visualized using RNA in-situ hybridization. To determine delta-catenin’s requirement in amphibian development, I employed anti-sense morpholinos to knock-down gene products, finding that delta-catenin depletion results in developmental defects in gastrulation, neural crest migration and kidney tubulogenesis, phenotypes that were specific based upon rescue experiments. In biochemical and cellular assays, delta-catenin knock-down reduced cadherin levels and cell adhesion, and impaired activation of RhoA and Rac1, small GTPases that regulate actin dynamics and morphogenetic movements. Indeed, exogenous C-cadherin, or dominant-negative RhoA or dominant-active Rac1, significantly rescued delta-catenin depletion. Thus, my results indicate delta-catenin’s essential roles in Xenopus development, with contributing functional links to cadherins and Rho family small G proteins. In examining delta-catenin’s nuclear roles, I identified delta-catenin as an interacting partner and substrate of the caspase-3 protease, which plays critical roles in apoptotic as well as non-apoptotic processes. Delta-catenin’s interaction with and sensitivity to caspase-3 was confirmed using assays involving its cleavage in vitro, as well as within Xenopus apoptotic extracts or mammalian cell lines. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo-repeat 6 of delta-catenin, was identified through peptide sequencing. Cleavage thus generates an amino- (1-816) and carboxyl-terminal (817-1314) fragment each containing about half of the central Armadillo-domain. I found that cleavage of delta-catenin both abolishes its association with cadherins, and impairs its ability to modulate small GTPases. Interestingly, the carboxyl-terminal fragment (817-1314) possesses a conserved putative nuclear localization signal that I found is needed to facilitate delta-catenin’s nuclear targeting. To probe for novel nuclear roles of delta-catenin, I performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating its interaction with an uncharacterized KRAB family zinc finger protein I named ZIFCAT. My results indicate that ZIFCAT is nuclear, and suggest that it may associate with DNA as a transcriptional repressor. I further determined that other p120 sub-class catenins are similarly cleaved by caspase-3, and likewise bind ZIFCAT. These findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120 sub-family members, facilitating the coordinate modulation of cadherins, small GTPases and nuclear functions. Together, my work suggested delta-catenin’s essential roles in Xenopus development, and has revealed its novel contributions to cell junctions (via cadherins), cytoskeleton (via small G proteins), and nucleus (via ZIFCAT). Future questions include the larger role and gene targets of delta-catenin in nucleus, and identification of upstream signaling events controlling delta-catenin’s activities in development or disease progression.
Resumo:
The Wnt pathways contribute to many processes in cancer and developmental biology, with β-catenin being a key canonical component. P120-catenin, which is structurally similar to β-catenin, regulates the expression of certain Wnt target genes, relieving repression conferred by the POZ/ zinc-finger transcription factor Kaiso. In my first project, employing Xenopus embryos and mammalian cell lines, I found that the degradation machinery of the canonical Wnt pathway modulates p120-catenin protein stability, especially p120 isoform-1, through mechanisms shared with b-catenin. Exogenous expression of destruction-complex components such as GSK3b or Axin promotes p120-catenin degradation, and consequently, is able to rescue developmental phenotypes resulting from p120 over-expression during early Xenopus embryonic development. Conversely, as predicted, the in vivo depletion of either Axin or GSK3b coordinately increased p120 and b-catenin levels, while p120 levels decreased upon LRP5/6 depletion, which are positive modulators in the canonical Wnt pathway. At the primary sequence level, I resolved conserved GSK3b phosphorylation sites in p120’s (isoform 1) amino-terminal region. Point-mutagenesis of these residues inhibited the association of destruction complex proteins including those involved in ubiquitination, resulting in p120-catenin stabilization. Importantly, we found that two additional p120-catenin family members, ARVCF-catenin and d-catenin, in common with b-catenin and p120, associate with Axin, and are degraded in Axin’s presence. Thus, by similar means, it appears that canonical Wnt signals coordinately modulate multiple catenin proteins having roles in development and conceivably disease states. In my second project, I found that the Dyrk1A kinase exhibits a positive effect upon p120-catenin levels. That is, unlike the negative regulator GSK3b kinase, a candidate screen revealed that Dyrk1A kinase enhances p120-catenin protein levels via increased half-life. Dyrk1A is encoded by a gene located within the trisomy of chromosome 21, which contributes to mental retardation in Down Syndrome patients. I found that Dyrk1A expression results in increased p120 protein levels, and that Dyrk1A specifically associates with p120 as opposed to other p120-catenin family members or b-catenin. Consistently, Dyrk1A depletion in mammalian cell lines and Xenopus embryos decreased p120-catenin levels. I further confirmed that Dyrk overexpression and knock-down modulates both Siamois and Wnt11 gene expression in the expected manner based upon the resulting latered levels of p120-catenin. I determined that Dyrk expression rescues Kaiso depletion effects (gastrulation failure; increased endogenous Wnt11 expression), and vice versa. I then identified a putative Dyrk phosphorylation region within the N-terminus of p120-catenin, which may also be responsible for Dyrk1A association. I went on to make a phosphomimic mutant, which when over-expressed, had the predicted enhanced capacity to positively modulate endogenous Wnt11 and Siamois expression, and thereby generate gastrulation defects. Given that Dyrk1A modulates Siamois expression through stabilization of p120-catenin, I further observed that ectopic expression of Dyrk can positively influence b-catenin’s capacity to generate ectopic dorsal axes when ventrally expressed in early Xenopus embryos. Future work will investigate how Dyrk1A modulates the Wnt signaling pathway through p120-catenin, and possibly begin to address how dysfunction of Dyrk1A with respect to p120-catenin might relate to aspects of Down syndrome. In summary, the second phase of my graduate work appears to have revealed a novel aspect of Dyrk1A/p120-catenin action in embryonic development, with a functional linkage to canonical Wnt signaling. What I have identified as a “Dyrk1A/p120-catenin/Kaiso pathway” may conceivably assist in our larger understanding of the impact of Dyrk1A dosage imbalance in Down syndrome.
Resumo:
Genes of the basic helix-loop-helix transcription factor family have been implicated in many different developmental processes from neurogenesis to myogenesis. The recently cloned bHLH transcription factor, paraxis, has been found to be expressed in the paraxial mesoderm of the mouse suggesting a role for paraxis in the development of this mesodermal subtype which gives rise to the axial muscle, skeleton, and dermis of the embryo. In order to perform in vivo gain of function assays and obtain a better understanding of the possible roles of paraxis in mesodermal and somitic development, we have successfully identified homologues of paraxis in the frog, Xenopus laevis, where the process of mesodermal induction and development is best understood. The two homologues, Xparaxis-a and Xparaxis-b, are conserved with respect to their murine homologue in structure and expression within the embryo. Xparaxis genes are expressed immediately after gastrulation in the paraxial mesoderm of Xenopus embryos and are down regulated in the myotome of the mature somite with continued expression in the undifferentiated dermatome. Overexpression of Xparaxis-b in Xenopus embryos caused defects in the organization and morphology of the somites. This effect was not dependent on DNA binding of Xparaxis but is likely due to its dimerization with other bHLH factors. Co-injections with XE12 did not diminish the effects indicating that the defects were not the result of limiting amounts of XE12. We also demonstrated that Xparaxis does not cause obvious defects in the cell adhesions and movements required for proper mesoderm patterning during gastrulation. The paraxis proteins also lacked the ability to activate transcription as GAL4 fusion proteins in a GAL4 reporter assay, indicating that the genes may function more as modulators of the activity of dimerization partners than as positively acting cell determination factors. In agreement with this, Xparaxis is regulated in response to other pathways of bHLH gene action, in that XE12 can activate Xparaxis-b, in vivo. In addition we show regulation of Xparaxis in response to mMyoD induced myogenesis pathways, again suggesting Xparaxis plays an important role in the patterning and organization of the paraxial mesoderm. ^
Resumo:
A fundamental question in developmental biology is to understand the mechanisms that govern the development of an adult individual from a single cell. Goosecoid (Gsc) is an evolutionarily conserved homeobox gene that has been cloned in vertebrates and in Drosophila. In mice, Gsc is first expressed during gastrulation stages where it marks anterior structures of the embryo, this pattern of expression is conserved among vertebrates. Later, expression is observed during organogenesis of the head, limbs and the trunk. The conserved pattern of expression of Gsc during gastrulation and gain of function experiments in Xenopus suggested a function for Gsc in the development of anterior structures in vertebrates. Also, its expression pattern in mouse suggested a role in morphogenesis of the head, limbs and trunk. To determine the functional requirement of Gsc in mice a loss of function mutation was generated by homologous recombination in embryonic stem cells and mice mutant for Gsc were generated.^ Gsc-null mice survived to birth but died hours after delivery. Phenotypic analysis revealed craniofacial and rib cage abnormalities that correlated with the second phase of Gsc expression in the head and trunk but no anomalies were found that correlated with its pattern of expression during gastrulation or limb development.^ To determine the mode of action of Gsc during craniofacial development aggregation chimeras were generated between Gsc-null and wild-type embryos. Chimeras were generated by the aggregation of cleavage stage embryos, taking advantage of two different Gsc-null alleles generated during gene targeting. Chimeras demonstrated a cell-autonomous function for Gsc during craniofacial development and a requirement for Gsc function in cartilage and mesenchymal tissues.^ Thus, during embryogenesis in mice, Gsc is not an essential component of gastrulation as had been suggested in previous experiments. Gsc is required for craniofacial development where it acts cell autonomously in cartilage and mesenchymal tissues. Gsc is also required for proper development of the rib cage but it is dispensable for limb development in mice. ^
Resumo:
We investigate reductions of M-theory beyond twisted tori by allowing the presence of KK6 monopoles (KKO6-planes) compatible with N = 4 supersymmetry in four dimensions. The presence of KKO6-planes proves crucial to achieve full moduli stabilisation as they generate new universal moduli powers in the scalar potential. The resulting gauged supergravities turn out to be compatible with a weak G2 holonomy at N = 1 as well as at some non-supersymmetric AdS4 vacua. The M-theory flux vacua we present here cannot be obtained from ordinary type IIA orientifold reductions including background fluxes, D6-branes (O6-planes) and/or KK5 (KKO5) sources. However, from a four-dimensional point of view, they still admit a description in terms of so-called non-geometric fluxes. In this sense we provide the M-theory interpretation for such non-geometric type IIA flux vacua.
Resumo:
We present a simple combinatorial model for quasipositive surfaces and positive braids, based on embedded bipartite graphs. As a first application, we extend the well-known duality on standard diagrams of torus links to twisted torus links. We then introduce a combinatorial notion of adjacency for bipartite graph links and discuss its potential relation with the adjacency problem for plane curve singularities.
Resumo:
The synthesis of the monomeric building block 13 and its constitutional isomer 12 of a new type of DNA analog, distamycin-NA, is presented (Schemes 1 and 2). This building block consists of a uracil base attached to a thiophene core unit via a biaryl-like axis. Next to the biaryl-like axis on the thiophene chromophore, a carboxy and an amino substituent are located allowing for oligomerization via peptide coupling. The proof of constitution and the conformational preferences about the biaryl-like axis were established by means of X-ray analyses of the corresponding nitro derivatives 10 and 11. Thus, the uracil bases are propeller-twisted relative to the thiophene core, and bidentate H-bonds occur between two uracil bases in the crystals. The two amino-acid building blocks 12 and 13 were coupled to give the dimers 15 and 16 using dicyclohexylcarbodiimide (DCC) in THF/LiCl and DMF, respectively. While the dimer 15 showed no atropisomerism on the NMR time scale at room temperature, its isomer 16 occurred as distinct diastereoisomers due to the hindered rotation around its biaryl-like axis. Variable-temperature 1H-NMR experiments allowed to determine a rotational barrier of 19 ± 1 kcal/mol in 16. The experimental data were complemented by AM1 calculations.
Resumo:
With the aim of providing a worldsheet description of the refined topological string, we continue the study of a particular class of higher derivative couplings Fg,n in the type II string effective action compactified on a Calabi–Yau threefold. We analyse first order differential equations in the anti-holomorphic moduli of the theory, which relate the Fg,n to other component couplings. From the point of view of the topological theory, these equations describe the contribution of non-physical states to twisted correlation functions and encode an obstruction for interpreting the Fg,n as the free energy of the refined topological string theory. We investigate possibilities of lifting this obstruction by formulating conditions on the moduli dependence under which the differential equations simplify and take the form of generalised holomorphic anomaly equations. We further test this approach against explicit calculations in the dual heterotic theory.
Resumo:
Water-containing biological material cannot withstand the vacuum of the transmission electron microscope. The classical solution to this problem has been to dehydrate chemically fixed biological samples and then embed them in resin. During such treatment, the bacterial nucleoid is especially prone to aggregation, which affects its global shape and fine structure. Initial attempts to deal with aggregation by optimizing chemical fixation yielded contradictory results. Two decades ago, the situation improved with the introduction of freeze-substitution. This method is based on dehydration of unfixed cryo-immobilized samples at low temperature, which substantially reduces aggregation. As a result, the global shape of the nucleoid can be fairly well defined. Overall, in actively growing bacteria, the nucleoids are dispersed and "coralline" but become more confined when growth ceases. However, it is usually impossible to determine the molecular arrangement of DNA in the nucleoids of freeze-substituted bacteria because crystallization and the subsequent removal of water during substitution result in unavoidable distortions at the ultrastructural level. Recently, cryo-electron microscopy of vitreous sections has enabled the fully hydrated bacterial nucleoid to be studied close to the native state. Such studies have revealed aspects of bacterial nucleoid organization that are not preserved by freeze-substitution, including locally parallel or twisted bundles of DNA filaments, which are more frequently observed once bacterial growth has stopped, whereas in actively growing bacteria, the DNA is seen to be in a mostly disordered pattern.
Resumo:
We present results on the nucleon scalar, axial, and tensor charges as well as on the momentum fraction, and the helicity and transversity moments. The pion momentum fraction is also presented. The computation of these key observables is carried out using lattice QCD simulations at a physical value of the pion mass. The evaluation is based on gauge configurations generated with two degenerate sea quarks of twisted mass fermions with a clover term. We investigate excited states contributions with the nucleon quantum numbers by analyzing three sink-source time separations. We find that, for the scalar charge, excited states contribute significantly and to a less degree to the nucleon momentum fraction and helicity moment. Our result for the nucleon axial charge agrees with the experimental value. Furthermore, we predict a value of 1.027(62) in the MS¯¯¯¯¯ scheme at 2 GeV for the isovector nucleon tensor charge directly at the physical point. The pion momentum fraction is found to be ⟨x⟩π±u−d=0.214(15)(+12−9) in the MS¯¯¯¯¯ at 2 GeV.
Resumo:
We present a comparison of different definitions of the topological charge on the lattice, using a small-volume ensemble with 2 flavours of dynamical twisted mass fermions. The investigated definitions are: index of the overlap Dirac operator, spectral projectors, spectral flow of the HermitianWilson- Dirac operator and field theoretic with different kinds of smoothing of gauge fields (HYP and APE smearings, gradient flow, cooling). We also show some results on the topological susceptibility.
Resumo:
Human a2 -macroglobulin ( a2 M; homotetramer, Mr 720 kDa) is an essential scavenger of proteinases in the serum. Each of its four subunits has a ‘bait region’, with cleavage sequences for almost all endo-proteinases, an unusual thiol ester moiety and a receptor-binding domain (RBD). Bait region cleavage in native a2 M ( a2 M-N) by a proteinase results in rapid thiol ester breakage, with a large-scale structural transformation, in which a2 M uniquely entraps the proteinase in a cage-like structure and exposes receptor-binding domains for rapid endocytosis. Transformed a2 M ( a2 M-TR) contains up to two proteinases, which remain active to small substrates. 3-D electron microscopy is optimally suited to study this unusual structural change at resolutions near (1/30) Å−1. ^ The structural importance of the thiol esters was demonstrated by a genetically-engineered a2 M, with the cysteines involved in thiol ester formation mutated to serines, which appeared structurally homologous to a2 M-TR. This demonstrates that the four highly labile thiol esters alone maintain the a2 M-N structure, while the ‘closed trap’ formed by a2 M-TR is a more stable structural form. ^ Half-transformed a2 M ( a2 M-HT), with cleaved bait regions and thiol esters in only two of its four subunits, provides an important structural link between a2 M-N and a2 M-TR. A comparison with a2 M-N showed the two proteinase-entrapping domains were above and below the plane bisecting the long axis. Both a2 M-N and a2 M-TR consist of two dense, oppositely twisted strands with significant interconnections, indicating that the structural change involves a rotation of these strands. In a2 M-HT these strands were partially untwisted with large central openings, revealing the manner in which the proteinase enters the internal cavity of a2 M. ^ In reconstructions of a2 M-N, a2 M-HT and a2 M-TR labeled with a monoclonal Fab, the Fabs were located on distal ends of each constitutive strand, demonstrating an anti-parallel arrangement of the subunits. Separation between the top and bottom pairs of Fabs was nearly the same on all structures, but the pairs were rotated about the long axis. Taken together, these results indicate that upon proteinase cleavage the two strands in a2 M-N separate. The proteinase enters the structure, while the strands re-twist to encage it. In a2 M-TR, which displays receptor-binding arms, more than two subunits are transformed as strands in the transformed half of a2 M-HT were not separated. ^
Resumo:
Chromosome segregation is a critical step during cell division to avoid aneuploidy and promote proper organismal development. Correct sister chromatid positioning and separation during mitosis helps to achieve faithful transmission of genetic material to daughter cells. This prevents improper chromosome partitioning that can potentially result in extrachromosomal fragments, increasing the tumorigenic potential of the cells. The kinetochore is a protenaicious structure responsible for the initiation and orchestration of chromosome movement during mitosis. This highly conserved structure among eukaryotes is required for chromosome attachment to the mitotic spindle and failure to assemble the kinetochore results in aberrant chromosome segregation. Thus elucidating the mechanism of kinetochore assembly is important to have a better understanding of the regulation that controls chromosome segregation. Our previous work identified the C. elegans Tousled-like kinase (TLK-1) as a mitotic kinase and depletion of TLK-1 results in embryonic lethality, characterized by nuclei displaying poor mitotic chromosome alignment, lagging chromosome, and chromosome bridges during anaphase. Additionally, previous studies from our group revealed that TLK-1 is phosphorylated independently by Aurora B at serine 634, and by CHK-1 at threonine T610. The research presented herein reveals that both phosphorylated forms of TLK-1 associate with the kinetochore during mitosis. Moreover, by systematic depletion of kinetochore proteins, I uncovered that pTLK-1 is bona fide kinetochore component that is located at the outer kinetochore layer, influencing the microtubule-binding interface. I also demonstrated that TLK-1 is necessary for the kinetochore localization of the microtubule interacting proteins CLS-2 and LIS-1 and I show that embryos depleted of TLK-1 presented an aberrant twisted kinetochore pattern. Furthermore, I established that the inner kinetochore protein KNL-2 is an in vitro substrate of TLK-1 indicating a possible role of TLK-1 in regulating centromeric assembly. Collectively, these results suggest a novel role for the Tousled-like kinase in regulation of kinetochore assembly and microtubule dynamics and demonstrate the necessity of TLK-1 for proper chromosome segregation in C. elegans.
Resumo:
The Armadillo family catenin proteins function in multiple capacities including cadherin-mediated cell-cell adhesion and nuclear signaling. The newest catenin, p120 catenin, differs from the classical catenins and binds to the membrane-proximal domain of cadherins. Recently, a novel transcription factor Kaiso was found to interact with p120 catenin, suggesting that p120 catenin also possesses a nuclear function. We isolated the Xenopus homolog of Kaiso, XKaiso, from a Xenopus stage 17 cDNA library. XKaiso contains an amino-terminal BTB/POZ domain and three carboxyl-terminal zinc fingers. The XKaiso transcript was present maternally and expressed throughout early embryonic development. XKaiso's spatial expression was defined via in situ hybridization and was found localized to the brain, eye, ear, branchial arches, and spinal cord. Co-immunoprecipitation of Xenopus p120 catenin and XKaiso demonstrated their mutual association, while related experiments employing differentially epitope-tagged XKaiso constructs suggest that XKaiso also self-associates. On the functional level, reporter assays employing a chimera of XKaiso fused to the GAL4 DNA binding domain indicated that XKaiso is a transcriptional repressor. To better understand the significance of the Kaiso-p120 catenin complex in vertebrate development, Kaiso knock-down experiments were undertaken, and the modulatory role of p120 catenin in Kaiso function examined during Xenopus development. Using morpholino antisense oligonucleotides to block translation of XKaiso, XKaiso was found to be essential for Xenopus gastrulation, being required for correct morphogenetic movements in early embryogenesis. Molecular marker analyses indicated that one target gene of the Wnt/β-catenin pathway, Siamois, is significantly increased in embryos depleted for XKaiso, while other dorsal, ventral, and mesodermal cell fate markers were unaltered. In addition, the non-canonical Wnt-11, known to participate in planar cell polarity/convergent extension processes, was significantly upregulated following depletion of XKaiso. Such increased Wnt-11 expression likely contributed to the XKaiso depletion phenotype because a dominant negative form of Wnt-11 or of the downstream effector Dishevelled partially rescued the observed gastrulation defects. These results show that XKaiso is essential for proper gastrulation movements, resulting at least in part from its modulation of non-canonical Wnt signaling. The significance of the XKaiso-p120 catenin interaction has yet to be determined, but appears to include a role in modulating genes promoting canonical and non-canonical Wnt signals. ^
Resumo:
El encomio del trágico Agatón es un intermedio musical, una canción que detiene la avanzada conceptual del Banquete, pero con gravísimo poder proléptico. Se recupera todo lo dicho hasta allí, pero tergiversado por su enfoque de marcada impronta gorgiana. Cada comensal conlleva la concepción compuesta Amor-Belleza, donde todo amor es amor de cierta belleza. Distinguiendo el éros presentado por Agatón (erótica narcisista) intentaremos mostrar qué tipo de belleza nos presenta este comensal, y cuál es la poesía que le corresponde. Entonces se dará un agón paratextual, una referencia al gran combate que Platón sostuvo toda su vida: el conflicto entre filosofía y poesía. Mostraremos que Agatón, a la vez Narciso, poeta mimético, inspirado, poseso y cosmético, es la imagen del poeta que el filósofo ateniense detesta, que, como paradigma construido para este diálogo, tiene todos los defectos criticados a lo largo de la obra platónica y sirve para tematizar este enfrentamiento