997 resultados para Traffic measurement.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding network traffic behaviour is crucial for managing and securing computer networks. One important technique is to mine frequent patterns or association rules from analysed traffic data. On the one hand, association rule mining usually generates a huge number of patterns and rules, many of them meaningless or user-unwanted; on the other hand, association rule mining can miss some necessary knowledge if it does not consider the hierarchy relationships in the network traffic data. Aiming to address such issues, this paper proposes a hybrid association rule mining method for characterizing network traffic behaviour. Rather than frequent patterns, the proposed method generates non-similar closed frequent patterns from network traffic data, which can significantly reduce the number of patterns. This method also proposes to derive new attributes from the original data to discover novel knowledge according to hierarchy relationships in network traffic data and user interests. Experiments performed on real network traffic data show that the proposed method is promising and can be used in real applications. Copyright2013 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we used a 3D quantitative CT ultrasound imaging system to characterise polymer gel dosimeters. The system comprised of two identical 5 MHz 128 element phased-array ultrasound transducers co-axially aligned and submerged in water as a coupling agent. Rotational and translational movement of the gel dosimeter sample between the transducers were performed using a robotic arm. Ultrasound signals were generated and received using an Olympus Omniscan unit. Dose sensitivity of attenuation and time of flight ultrasonic parameters were assessed using this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The success or effectiveness for any aircraft design is a function of many trade-offs. Over the last 100 years of aircraft design these trade-offs have been optimized and dominant aircraft design philosophies have emerged. Pilotless aircraft (or uninhabited airborne systems, UAS) present new challenges in the optimization of their configuration. Recent developments in battery and motor technology have seen an upsurge in the utility and performance of electric powered aircraft. Thus, the opportunity to explore hybrid-electric aircraft powerplant configurations is compelling. This thesis considers the design of such a configuration from an overall propulsive, and energy efficiency perspective. A prototype system was constructed using a representative small UAS internal combustion engine (10cc methanol two-stroke) and a 600W brushless Direct current (BLDC) motor. These components were chosen to be representative of those that would be found on typical small UAS. The system was tested on a dynamometer in a wind-tunnel and the results show an improvement in overall propulsive efficiency of 17% when compared to a non-hybrid powerplant. In this case, the improvement results from the utilization of a larger propeller that the hybrid solution allows, which shows that general efficiency improvements are possible using hybrid configurations for aircraft propulsion. Additionally this approach provides new improvements in operational and mission flexibility (such as the provision of self-starting) which are outlined in the thesis. Specifically, the opportunity to use the windmilling propeller for energy regeneration was explored. It was found (in the prototype configuration) that significant power (60W) is recoverable in a steep dive, and although the efficiency of regeneration is low, the capability can allow several options for improved mission viability. The thesis concludes with the general statement that a hybrid powerplant improves the overall mission effectiveness and propulsive efficiency of small UAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless networked control systems (WNCSs) have been widely used in the areas of manufacturing and industrial processing over the last few years. They provide real-time control with a unique characteristic: periodic traffic. These systems have a time-critical requirement. Due to current wireless mechanisms, the WNCS performance suffers from long time-varying delays, packet dropout, and inefficient channel utilization. Current wirelessly networked applications like WNCSs are designed upon the layered architecture basis. The features of this layered architecture constrain the performance of these demanding applications. Numerous efforts have attempted to use cross-layer design (CLD) approaches to improve the performance of various networked applications. However, the existing research rarely considers large-scale networks and congestion network conditions in WNCSs. In addition, there is a lack of discussions on how to apply CLD approaches in WNCSs. This thesis proposes a cross-layer design methodology to address the issues of periodic traffic timeliness, as well as to promote the efficiency of channel utilization in WNCSs. The design of the proposed CLD is highlighted by the measurement of the underlying network condition, the classification of the network state, and the adjustment of sampling period between sensors and controllers. This period adjustment is able to maintain the minimally allowable sampling period, and also maximize the control performance. Extensive simulations are conducted using the network simulator NS-2 to evaluate the performance of the proposed CLD. The comparative studies involve two aspects of communications, with and without using the proposed CLD, respectively. The results show that the proposed CLD is capable of fulfilling the timeliness requirement under congested network conditions, and is also able to improve the channel utilization efficiency and the proportion of effective data in WNCSs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is part of a major project with a stimulus that rose from the need to manage a large number of ageing bridges in low traffic volume roads (LTVR) in Australia. The project investigated, designed and consequently constructed, involved replacing an ageing super-structure of a 10m span bridge with a disused Flat-bed Rail Wagon (FRW). This research, therefore, is developed on the premises that the FRW can be adopted as the main structural system for the bridges in LTVR network. The main focus of this research is to present two alternate deck wearing systems (DWS) as part of the design of the FRW as road bridge deck conforming to AS5100 (2004). The bare FRW structural components were first examined for their adequacy (ultimate and serviceability) in resisting the critical loads specified in AS5100(2004). Two options of DWSs were evaluated and their effects on the FRW examined. The first option involved usage of timber DWS; the idea of this option was to use all the primary and secondary members of the FRW in load sharing and to provide additional members where weaknesses in the original members arose. The second option involved usage of reinforced concrete DWS with only the primary members of the FRW sharing the AS5100 (2004) loading. This option inherently minimised the risk associated with any uncertainty of the secondary members to their structural adequacy. This thesis reports the design phases of both options with conclusions of the selection of the ideal option for better structural performance, ease of construction and cost. The comparison carried out here focuses on the distribution of the traffic load by the FRW as a superstructure. Advantages and disadvantages highlighting cost comparisons and ease of constructability of the two systems are also included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bicycle commuting has the potential to be an effective contributing solution to address some of modern society’s biggest issues, including cardiovascular disease, anthropogenic climate change and urban traffic congestion. However, individuals shifting from a passive to an active commute mode may be increasing their potential for air pollution exposure and the associated health risk. This project, consisting of three studies, was designed to investigate the health effects of bicycle commuters in relation to air pollution exposure, in a major city in Australia (Brisbane). The aims of the three studies were to: 1) examine the relationship of in-commute air pollution exposure perception, symptoms and risk management; 2) assess the efficacy of commute re-routing as a risk management strategy by determining the exposure potential profile of ultrafine particles along commute route alternatives of low and high proximity to motorised traffic; and, 3) evaluate the feasibility of implementing commute re-routing as a risk management strategy by monitoring ultrafine particle exposure and consequential physiological response from using commute route alternatives based on real-world circumstances; 3) investigate the potential of reducing exposure to ultrafine particles (UFP; < 0.1 µm) during bicycle commuting by lowering proximity to motorised traffic with real-time air pollution and acute inflammatory measurements in healthy individuals using their typical, and an alternative to their typical, bicycle commute route. The methods of the three studies included: 1) a questionnaire-based investigation with regular bicycle commuters in Brisbane, Australia. Participants (n = 153; age = 41 ± 11 yr; 28% female) reported the characteristics of their typical bicycle commute, along with exposure perception and acute respiratory symptoms, and amenability for using a respirator or re-routing their commute as risk management strategies; 2) inhaled particle counts measured along popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart and respiratory rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing; 3) thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) completed two return trips of their typical route (HIGH) and a pre-determined altered route of lower proximity to motorised traffic (LOW; determined by the proportion of on-road cycle paths). Particle number concentration (PNC) and diameter (PD) were monitored in real-time in-commute. Acute inflammatory indices of respiratory symptom incidence, lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and one and three hours post-commute. The main results of the three studies are that: 1) healthy individuals reported a higher incidence of specific acute respiratory symptoms in- and post- (compared to pre-) commute (p < 0.05). The incidence of specific acute respiratory symptoms was significantly higher for participants with respiratory disorder history compared to healthy participants (p < 0.05). The incidence of in-commute offensive odour detection, and the perception of in-commute air pollution exposure, was significantly lower for participants with smoking history compared to healthy participants (p < 0.05). Females reported significantly higher incidence of in-commute air pollution exposure perception and other specific acute respiratory symptoms, and were more amenable to commute re-routing, compared to males (p < 0.05). Healthy individuals have indicated a higher incidence of acute respiratory symptoms in- and post- (compared to pre-) bicycle commuting, with female gender and respiratory disorder history indicating a comparably-higher susceptibility; 2) total mean PNC of LOW (compared to HIGH) was reduced (1.56 x e4 ± 0.38 x e4 versus 3.06 x e4 ± 0.53 x e4 ppcc; p = 0.012). Total estimated ventilation rate did not vary significantly between LOW and HIGH (43 ± 5 versus 46 ± 9 L•min; p = 0.136); however, due to total mean PNC, accumulated inhaled particle counts were 48% lower in LOW, compared to HIGH (7.6 x e8 ± 1.5 x e8 versus 14.6 x e8 ± 1.8 x e8; p = 0.003); 3) LOW resulted in a significant reduction in mean PNC (1.91 x e4 ± 0.93 x e4 ppcc vs. 2.95 x e4 ± 1.50 x e4 ppcc; p ≤ 0.001). Commute distance and duration were not significantly different between LOW and HIGH (12.8 ± 7.1 vs. 12.0 ± 6.9 km and 44 ± 17 vs. 42 ± 17 mins, respectively). Besides incidence of in-commute offensive odour detection (42 vs. 56 %; p = 0.019), incidence of dust and soot observation (33 vs. 47 %; p = 0.038) and nasopharyngeal irritation (31 vs. 41 %; p = 0.007), acute inflammatory indices were not significantly associated to in-commute PNC, nor were these indices reduced with LOW compared to HIGH. The main conclusions of the three studies are that: 1) the perception of air pollution exposure levels and the amenability to adopt exposure risk management strategies where applicable will aid the general population in shifting from passive, motorised transport modes to bicycle commuting; 2) for bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing exposure to motorised traffic, which should be considered by both bicycle commuters and urban planners; 3) exposure to PNC, and the incidence of offensive odour and nasopharyngeal irritation, can be significantly reduced when utilising a strategy of lowering proximity to motorised traffic whilst bicycle commuting, without significantly increasing commute distance or duration, which may bring important benefits for both healthy and susceptible individuals. In summary, the findings from this project suggests that bicycle commuters can significantly lower their exposure to ultrafine particle emissions by varying their commute route to reduce proximity to motorised traffic and associated combustion emissions without necessarily affecting their time of commute. While the health endpoints assessed with healthy individuals were not indicative of acute health detriment, individuals with pre-disposing physiological-susceptibility may benefit considerably from this risk management strategy – a necessary research focus with the contemporary increased popularity of both promotion and participation in bicycle commuting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we analyse the effects of highway traffic flow parameters like vehicle arrival rate and density on the performance of Amplify and Forward (AF) cooperative vehicular networks along a multi-lane highway under free flow state. We derive analytical expressions for connectivity performance and verify them with Monte-Carlo simulations. When AF cooperative relaying is employed together with Maximum Ratio Combining (MRC) at the receivers the average route error rate shows 10-20 fold improvement compared to direct communication. A 4-8 fold increase in maximum number of traversable hops can also be observed at different vehicle densities when AF cooperative communication is used to strengthen communication routes. However the theorical upper bound of maximum number of hops promises higher performance gains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of user expertise is a strategic imperative for organizations in hyper-competitive markets. This paper conceptualizes opreationalises and validates user expertise in contemporary Information Systems (IS) as a formative, multidimensional index. Such a validated and widely accepted index would facilitate progression of past research on user competence and efficacy of IS to complex contemporary IS, while at the same time providing a benchmark for organizations to track their user expertise. The validation involved three separate studies, including exploratory and confirmatory phases, using data from 244 respondents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim The objective is to establish determinants of drink-driving and its association with traffic crashes in Ghana. Methods A multivariable logistic regression was used to establish significant determinants of drink-driving and a bivariate logistic regression to establish the association between drink–driving and road traffic crashes in Ghana. Results In total, 2,736 motorists were randomly stopped for breath testing of whom 8.7% tested positive for alcohol. Among the total participants, 5.5% exceeded the legal BAC limit of 0.08%. Formal education is associated with a reduced likelihood of drink-driving compared with drivers without formal education. The propensity to drink-drive is 1.8 times higher among illiterate drivers compared with drivers with basic education. Young adult drivers also recorded elevated likelihoods for driving under alcohol impairment compared with adult drivers. The odds of drink-driving among truck drivers is OR=1.81, (95% CI=1.16 to 2.82) and two wheeler riders is OR=1.41, (95% CI=0.47 to 4.28) compared with car drivers. Contrary to general perception, commercial car drivers have a significant reduced likelihood of 41%, OR=0.59, (95% CI=0.38 to 0.92) compared with the private car driver. Bivariate analysis conducted showed a significant association between the proportion of drivers exceeding the legal BAC limit and road traffic fatalities, p<0.001. The model predicts a 1% increase in the proportion of drivers exceeding the legal BAC to be associated with a 4% increase in road traffic fatalities, 95% CI= 3% to 5% and vice versa. Conclusion A positive and significant association between roadside alcohol prevalence and road traffic fatality has been established. Scaling up roadside breath test, determining standard drink and disseminating to the populace and formulating policies targeting the youth such as increasing minimum legal drinking age and reduced legal BAC limit for the youth and novice drivers might improve drink-driving related crashes in Ghana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research aims to develop a reliable density estimation method for signalised arterials based on cumulative counts from upstream and downstream detectors. In order to overcome counting errors associated with urban arterials with mid-link sinks and sources, CUmulative plots and Probe Integration for Travel timE estimation (CUPRITE) is employed for density estimation. The method, by utilizing probe vehicles’ samples, reduces or cancels the counting inconsistencies when vehicles’ conservation is not satisfied within a section. The method is tested in a controlled environment, and the authors demonstrate the effectiveness of CUPRITE for density estimation in a signalised section, and discuss issues associated with the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Conjunctival ultraviolet autofluorescence (UVAF) photography was developed to detect and characterise pre-clinical sunlight-induced UV damage. The reliability of this measurement and its relationship to outdoor activity are currently unknown. METHODS: 599 people aged 16-85 years in the cross-sectional Norfolk Island Eye Study were included in the validation study. 196 UVAF individual photographs (49 people) and 60 UVAF photographs (15 people) of Norfolk Island Eye Study participants were used for intra- and inter-observer reliability assessment, respectively. Conjunctival UVAF was measured using UV photography. UVAF area was calculated using computerised methods by one grader on two occasions (intra-observer analysis) or two graders (inter-observer analysis). Outdoor activity category, during summer and winter separately, was determined with a UV questionnaire. Total UVAF equalled the area measured in four conjunctival areas (nasal/temporal conjunctiva of right and left eyes). RESULTS: Intra-observer (ρ_c=0.988, 95% CI 0.967 to 0.996, p<0.001), and inter-observer concordance correlation coefficients (ρ_c=0.924, 95% CI 0.870 to 0.956, p<0.001) of total UVAF exceeded 0.900. When grouped according to 10 mm(2) total UVAF increments, intra- and inter-observer reliability was very good (κ=0.81) and good (κ=0.71), respectively. Increasing time outdoors was strongly with increasing total UVAF in summer and winter (p(trend) <0.001). CONCLUSION: Intra- and inter-observer reliability of conjunctival UVAF is high. In this population, UVAF correlates strongly with the authors' survey-based assessment of time spent outdoors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existence of Macroscopic Fundamental Diagram (MFD), which relates space-mean density and flow, has been shown in urban networks under homogeneous traffic conditions. Since MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. One of the key requirements for well-defined MFD is the homogeneity of the area-wide traffic condition with links of similar properties, which is not universally expected in real world. For the practical application of the MFD concept, several researchers have identified the influencing factors for network homogeneity. However, they did not explicitly take the impact of drivers’ behaviour and information provision into account, which has a significant impact on simulation outputs. This research aims to demonstrate the effect of dynamic information provision on network performance by employing the MFD as a measurement. A microscopic simulation, AIMSUN, is chosen as an experiment platform. By changing the ratio of en-route informed drivers and pre-trip informed drivers different scenarios are simulated in order to investigate how drivers’ adaptation to the traffic congestion influences the network performance with respect to the MFD shape as well as other indicators, such as total travel time. This study confirmed the impact of information provision on the MFD shape, and addressed the usefulness of the MFD for measuring the dynamic information provision benefit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of applying unsaturated soil mechanics to geotechnical engineering design has been well understood. However, the consumption of time and the necessity for a specific laboratory testing apparatus when measuring unsaturated soil properties have limited the application of unsaturated soil mechanics theories in practice. Although methods for predicting unsaturated soil properties have been developed, the verification of these methods for a wide range of soil types is required in order to increase the confidence of practicing engineers in using these methods. In this study, a new permeameter was developed to measure the hydraulic conductivity of unsaturated soils using the steady-state method and directly measured suction (negative pore-water pressure) values. The apparatus is instrumented with two tensiometers for the direct measurement of suction during the tests. The apparatus can be used to obtain the hydraulic conductivity function of sandy soil over a low suction range (0-10 kPa). Firstly, the repeatability of the unsaturated hydraulic conductivity measurement, using the new permeameter, was verified by conducting tests on two identical sandy soil specimens and obtaining similar results. The hydraulic conductivity functions of the two sandy soils were then measured during the drying and wetting processes of the soils. A significant hysteresis was observed when the hydraulic conductivity was plotted against the suction. However, the hysteresis effects were not apparent when the conductivity was plotted against the volumetric water content. Furthermore, the measured unsaturated hydraulic conductivity functions were compared with predictions using three different predictive methods that are widely incorporated into numerical software. The results suggest that these predictive methods are capable of capturing the measured behavior with reasonable agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bluetooth technology is being increasingly used to track vehicles throughout their trips, within urban networks and across freeway stretches. One important opportunity offered by this type of data is the measurement of Origin-Destination patterns, emerging from the aggregation and clustering of individual trips. In order to obtain accurate estimations, however, a number of issues need to be addressed, through data filtering and correction techniques. These issues mainly stem from the use of the Bluetooth technology amongst drivers, and the physical properties of the Bluetooth sensors themselves. First, not all cars are equipped with discoverable Bluetooth devices and the Bluetooth-enabled vehicles may belong to some small socio-economic groups of users. Second, the Bluetooth datasets include data from various transport modes; such as pedestrian, bicycles, cars, taxi driver, buses and trains. Third, the Bluetooth sensors may fail to detect all of the nearby Bluetooth-enabled vehicles. As a consequence, the exact journey for some vehicles may become a latent pattern that will need to be extracted from the data. Finally, sensors that are in close proximity to each other may have overlapping detection areas, thus making the task of retrieving the correct travelled path even more challenging. The aim of this paper is twofold. We first give a comprehensive overview of the aforementioned issues. Further, we propose a methodology that can be followed, in order to cleanse, correct and aggregate Bluetooth data. We postulate that the methods introduced by this paper are the first crucial steps that need to be followed in order to compute accurate Origin-Destination matrices in urban road networks.