946 resultados para Traditional costing systems
Resumo:
Texto completo em atas de encontros científicos internacionais com arbitragem
Resumo:
In this thesis, we present a quantitative approach using probabilistic verification techniques for the analysis of reliability, availability, maintainability, and safety (RAMS) properties of satellite systems. The subject of our research is satellites used in mission critical industrial applications. A strong case for using probabilistic model checking to support RAMS analysis of satellite systems is made by our verification results. This study is intended to build a foundation to help reliability engineers with a basic background in model checking to apply probabilistic model checking to small satellite systems. We make two major contributions. One of these is the approach of RAMS analysis to satellite systems. In the past, RAMS analysis has been extensively applied to the field of electrical and electronics engineering. It allows system designers and reliability engineers to predict the likelihood of failures from the indication of historical or current operational data. There is a high potential for the application of RAMS analysis in the field of space science and engineering. However, there is a lack of standardisation and suitable procedures for the correct study of RAMS characteristics for satellite systems. This thesis considers the promising application of RAMS analysis to the case of satellite design, use, and maintenance, focusing on its system segments. Data collection and verification procedures are discussed, and a number of considerations are also presented on how to predict the probability of failure. Our second contribution is leveraging the power of probabilistic model checking to analyse satellite systems. We present techniques for analysing satellite systems that differ from the more common quantitative approaches based on traditional simulation and testing. These techniques have not been applied in this context before. We present the use of probabilistic techniques via a suite of detailed examples, together with their analysis. Our presentation is done in an incremental manner: in terms of complexity of application domains and system models, and a detailed PRISM model of each scenario. We also provide results from practical work together with a discussion about future improvements.
Resumo:
Objective: To analyze pharmaceutical interventions that have been carried out with the support of an automated system for validation of treatments vs. the traditional method without computer support. Method: The automated program, ALTOMEDICAMENTOS® version 0, has 925 052 data with information regarding approximately 20 000 medicines, analyzing doses, administration routes, number of days with such a treatment, dosing in renal and liver failure, interactions control, similar drugs, and enteral medicines. During eight days, in four different hospitals (high complexity with over 1 000 beds, 400-bed intermediate, geriatric and monographic), the same patients and treatments were analyzed using both systems. Results: 3,490 patients were analyzed, with 42 155 different treatments. 238 interventions were performed using the traditional system (interventions 0.56% / possible interventions) vs. 580 (1.38%) with the automated one. Very significant pharmaceutical interventions were 0.14% vs. 0.46%; significant was 0.38% vs. 0.90%; non-significant was 0.05% vs. 0.01%, respectively. If both systems are simultaneously used, interventions are performed in 1.85% vs. 0.56% with just the traditional system. Using only the traditional model, 30.5% of the possible interventions are detected, whereas without manual review and only the automated one, 84% of the possible interventions are detected. Conclusions: The automated system increases pharmaceutical interventions between 2.43 to 3.64 times. According to the results of this study the traditional validation system needs to be revised relying on automated systems. The automated program works correctly in different hospitals.
Resumo:
Increased occurrence of drought and dry spells during the growing season have resulted in increased interest in protection of tropical water catchment areas. In Mgeta, a water catchment area in the Uluguru Mountains in Tanzania, water used for vegetable and fruit production is provided through canals from the Uluguru South Forest Reserve. The clearing of forest land for cultivation in the steep slopes in the area is causing severe land degradation, which is threatening the water catchment area, livelihoods, and food security of the local communities, as well as the major population centers in the lowlands. In this paper, the economic performance of a traditional cropping-livestock system with East African (EA)-goats and pigs and extensive vegetable production is compared with a more sustainable and environmentally friendly crop-dairy goat production system. A linear programming (LP) crop-livestock model, maximizing farm income considering the environmental constraints in the area was applied for studying the economic performance of dairy goats in the production system. The model was worked out for the rainy and dry seasons and the analysis was conducted for a basic scenario representing the current situation, based on the variability in the 30 years period from 1982-2012, and in a scenario of both lower crop yields and increased crop variability due to climate change. Data obtained from a sample of 60 farmers that were interviewed using a questionnaire was used to develop and parameterize the model. The study found that in the steep slopes of the area, a crop-dairy goat system with extensive use of grass and multipurpose trees (MPTs) would do better than the traditional vegetable gardening with the EA goat production system. The crop-dairy goat system was superior both in the basic and in a climate change scenario since the yield variation of the grass and MPTs system was less affected compared to vegetable crops due to more tree cover and the use of perennial grasses. However, the goat milk production in the area was constrained by inadequate feeding and lack of an appropriate breeding program. Hence, farmers should enhance goat milk production by supplementing with more concentrate feed and by implementing goat-breeding principles. Moreover, policy measures to promote such a development are briefly discussed.
Resumo:
[EN] The concept of sustainability when referring to food production rests, in general, on 3 main aspects: 1) respect for the environment; 2) economic and social benefits for all involved in production; and 3) production of sufficient quantity of quality food at an accessible price. In this contribution we focus on the main aspects of the traditional sheep's milk and cheese production (under the Denomination of Origin Idiazabal Cheese) in the Basque Country that contribute primarily to its sustainability. It is based on the local latxa or carranzana breeds of sheep, adapted to the mountainous terrain. The sheepherder takes advantage of local resources to reduce management costs by combining indoor dry forage and concentrates with outdoor grazing throughout lactation, according to local pasture availability, and thus avoiding having to buy large amounts of feed. This system facilitates recycling of manure, fertilising pastures and forest at the same time. Use of local breeds helps maintain biodiversity of sheep breeds. Cheese is produced industrially (44.5% of the total cheese produced in 2008) from milk of many flocks, or artisanally (38.3%) by the sheepherders with the milk from their own flocks. Transforming their own milk into cheese is advantageous for the following reasons: 1) higher economic returns as compared to selling the milk to cheese factories because cheese price directly sold to consumers is more competitive than industrial cheese sold in supermarkets; 2) increases the value of women's work (over 80% of the cheese makers are women) in the community and their self-esteem; 3) it creates rural jobs and contributes to rural development; 4) we have demonstrated both with experimental and commercial flocks that part-time grazing allows the sheepherder to obtain high yields of milk, and cheese, of high nutritional and functional quality. Currently a less sustainable, intensive sheep's milk production with foreign, imported breeds kept indoors constantly is gaining favour among milk producers because of its perceived higher economic profitability.
Resumo:
Dissertação de mest. em Gestão Empresarial, Faculdade de Economia, Univ. do Algarve, 2004
Resumo:
Fifty-one experiments on maize -beans and 34 on maize-cowpea intercropping systems conducted mostly in semiarid Northeast Brazil were analysed to get an understanding of the performance of these intercrops in terms of their productivity as well as stability. Both the intercrop systems produced higher yields over their respective sole crops under a wide range of agroclimates; the average advantage with maize-beans was 32%, while that from maize-cowpea was 41%. The optimum row proportion for maize-beans was one maize: three beans, requiring 59% of sole crop maize population and 75% sole bean population. In maize-cowpea, alternate rows or one maize: two cowpea arrangement with about 50% of sole maize density and 100% of sole cowpea population seemed to be optimum. The intercrops failed less frequently compared to sole crops to meet specified incomes or yields. Sorghum seemed to be a good alternative to the traditional cereal because of its improved and consistent performance. Future research needs are discussed for further yield improvement in these two intercrop system.s
Resumo:
The current Amazon landscape consists of heterogeneous mosaics formed by interactions between the original forest and productive activities. Recognizing and quantifying the characteristics of these landscapes is essential for understanding agricultural production chains, assessing the impact of policies, and in planning future actions. Our main objective was to construct the regionalization of agricultural production for Rondônia State (Brazilian Amazon) at the municipal level. We adopted a decision tree approach, using land use maps derived from remote sensing data (PRODES and TerraClass) combined with socioeconomic data. The decision trees allowed us to allocate municipalities to one of five agricultural production systems: (i) coexistence of livestock production and intensive agriculture; (ii) semi-intensive beef and milk production; (iii) semi-intensive beef production; (iv) intensive beef and milk production, and; (v) intensive beef production. These production systems are, respectively, linked to mechanized agriculture (i), traditional cattle farming with low management, with (ii) or without (iii) a significant presence of dairy farming, and to more intensive livestock farming with (iv) or without (v) a significant presence of dairy farming. The municipalities and associated production systems were then characterized using a wide variety of quantitative metrics grouped into four dimensions: (i) agricultural production; (ii) economics; (iii) territorial configuration, and; (iv) social characteristics. We found that production systems linked to mechanized agriculture predominate in the south of the state, while intensive farming is mainly found in the center of the state. Semi-intensive livestock farming is mainly located close to the southwest frontier and in the north of the state, where human occupation of the territory is not fully consolidated. This distributional pattern reflects the origins of the agricultural production system of Rondônia. Moreover, the characterization of the production systems provides insights into the pattern of occupation of the Amazon and the socioeconomic consequences of continuing agricultural expansion.
Resumo:
Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.
(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.
(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.
Resumo:
Increasing in resolution of numerical weather prediction models has allowed more and more realistic forecasts of atmospheric parameters. Due to the growing variability into predicted fields the traditional verification methods are not always able to describe the model ability because they are based on a grid-point-by-grid-point matching between observation and prediction. Recently, new spatial verification methods have been developed with the aim of show the benefit associated to the high resolution forecast. Nested in among of the MesoVICT international project, the initially aim of this work is to compare the newly tecniques remarking advantages and disadvantages. First of all, the MesoVICT basic examples, represented by synthetic precipitation fields, have been examined. Giving an error evaluation in terms of structure, amplitude and localization of the precipitation fields, the SAL method has been studied more thoroughly respect to the others approaches with its implementation in the core cases of the project. The verification procedure has concerned precipitation fields over central Europe: comparisons between the forecasts performed by the 00z COSMO-2 model and the VERA (Vienna Enhanced Resolution Analysis) have been done. The study of these cases has shown some weaknesses of the methodology examined; in particular has been highlighted the presence of a correlation between the optimal domain size and the extention of the precipitation systems. In order to increase ability of SAL, a subdivision of the original domain in three subdomains has been done and the method has been applied again. Some limits have been found in cases in which at least one of the two domains does not show precipitation. The overall results for the subdomains have been summarized on scatter plots. With the aim to identify systematic errors of the model the variability of the three parameters has been studied for each subdomain.
Resumo:
Over the last decade, there has been a trend where water utility companies aim to make water distribution networks more intelligent in order to improve their quality of service, reduce water waste, minimize maintenance costs etc., by incorporating IoT technologies. Current state of the art solutions use expensive power hungry deployments to monitor and transmit water network states periodically in order to detect anomalous behaviors such as water leakage and bursts. However, more than 97% of water network assets are remote away from power and are often in geographically remote underpopulated areas, facts that make current approaches unsuitable for next generation more dynamic adaptive water networks. Battery-driven wireless sensor/actuator based solutions are theoretically the perfect choice to support next generation water distribution. In this paper, we present an end-to-end water leak localization system, which exploits edge processing and enables the use of battery-driven sensor nodes. Our system combines a lightweight edge anomaly detection algorithm based on compression rates and an efficient localization algorithm based on graph theory. The edge anomaly detection and localization elements of the systems produce a timely and accurate localization result and reduce the communication by 99% compared to the traditional periodic communication. We evaluated our schemes by deploying non-intrusive sensors measuring vibrational data on a real-world water test rig that have had controlled leakage and burst scenarios implemented.
Resumo:
A growing body of research in higher education suggests that teachers should move away from traditional lecturing towards more active and student-focus education approaches. Several classroom techniques are available to engage students and achieve more effective teaching and better learning experiences. The purpose of this paper is to share an example of how two of them – case-based teaching, and the use of response technologies – were implemented into a graduate-level food science course. The paper focuses in particular on teaching sensory science and sensometrics, including several concrete examples used during the course, and discussing in each case some of the observed outcomes. Overall, it was observed that the particular initiatives were effective in engaging student participation and promoting a more active way of learning. Case-base teaching provided students with the opportunity to apply their knowledge and their analytical skills to complex, real-life scenarios relevant to the subject matter. The use of audience response systems further facilitated class discussion, and was extremely well received by the students, providing a more enjoyable classroom experience.
Resumo:
The Juruá valley mesoregion is recognized for its diversity of cultivars of common beans and cowpea and is an important center for on farm bean conservation in Brazil. However, there is little information about production systems of Creoles cultivars and, in this approach, the study aimed to identify the production centers and to gather information about beans production systems. Thirty eight farmers and five merchants were interviewed using semi-structured questionnaries. Juruá valley farmers use three beans production systems: "beach farming", "slash burn system" and "stuffy farming". The systems use family labor with low dependence on external inputs, two classified as itinerant. The study identified two beans production centers: Alto Juruá extractive reserve and Santa Luzia directed settlement project.
Resumo:
To change unadapted water governing systems, and water users’ traditional conducts in line with climate change, understanding of systems’ structures and users’ behaviors is necessary. To this aim, comprehensive and pragmatic research was designed and implemented in the Urmia Lake Basin where due to the severe droughts, and human-made influences, especially through the agricultural development, the lake has been shrunken drastically. To analyze the water governance and conservation issues in the basin, an innovative framework was developed based on mathematical physics concepts and pro-environmental behavior theories. Accordingly, in system level (macro/meso), the problem of fit of the early-shaped water governing system associating with the function of “political-security” and “political-economic” factors in the basin was identified through mean-field models. Furthermore, the effect of a “political-environmental” factor, the Urmia Lake Restoration Program (ULRP), on reforming the system structure and hence its fit was assessed. The analysis results revealed that by revising the provincial boundaries (horizontal alternation) for the entity of Kurdistan province to permit that interact with the headquarter of West Azerbaijan province for its water demand-supply initiatives, the system fit can increase. Also, the constitution of the ULRP (vertical arrangement) not only could increase the structural fit of the water governing system to the basin, but also significantly could enhance the system fit through its water-saving policy. Besides, in individual level (micro), the governing factors of water conservation behavior of the major users/farmers were identified through rational and moral socio-psychological models. In rational approach, incorporating PMT and TPB, the SEM results demonstrated that “Perceived Vulnerability”, “Self-Efficacy”, “Response Efficacy”, “Response Cost”, “Subjective Norms” and “Institutional Trust” significantly affect the water-saving intention/behavior. Likewise, NAM based analysis as a moral approach, uncovered the significant effects of “Awareness of Consequences”, “Appraisal of Responsibility”, “Personal Norms” as well as “Place Attachment” and “Emotions” on water-saving intention.
Resumo:
The recent widespread use of social media platforms and web services has led to a vast amount of behavioral data that can be used to model socio-technical systems. A significant part of this data can be represented as graphs or networks, which have become the prevalent mathematical framework for studying the structure and the dynamics of complex interacting systems. However, analyzing and understanding these data presents new challenges due to their increasing complexity and diversity. For instance, the characterization of real-world networks includes the need of accounting for their temporal dimension, together with incorporating higher-order interactions beyond the traditional pairwise formalism. The ongoing growth of AI has led to the integration of traditional graph mining techniques with representation learning and low-dimensional embeddings of networks to address current challenges. These methods capture the underlying similarities and geometry of graph-shaped data, generating latent representations that enable the resolution of various tasks, such as link prediction, node classification, and graph clustering. As these techniques gain popularity, there is even a growing concern about their responsible use. In particular, there has been an increased emphasis on addressing the limitations of interpretability in graph representation learning. This thesis contributes to the advancement of knowledge in the field of graph representation learning and has potential applications in a wide range of complex systems domains. We initially focus on forecasting problems related to face-to-face contact networks with time-varying graph embeddings. Then, we study hyperedge prediction and reconstruction with simplicial complex embeddings. Finally, we analyze the problem of interpreting latent dimensions in node embeddings for graphs. The proposed models are extensively evaluated in multiple experimental settings and the results demonstrate their effectiveness and reliability, achieving state-of-the-art performances and providing valuable insights into the properties of the learned representations.