901 resultados para Thermosetting unsaturated polyester


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The activation of the beta-adrenergic system promotes G protein stimulation that, via cyclic adenosine monophosphate (cAMP), alters the structure of protein kinase A (PKA) and leads to phospholamban (PLB) phosphorylation. This protein participates in the system that controls intracellular calcium in muscle cells, and it is the primary regulator of sarcoplasmic reticulum calcium pump activity. In obesity, the beta-adrenergic system is activated by the influence of increased leptin, therefore, resulting in higher myocardial phospholamban phosphorylation via cAMP-PKA. Objective: To investigate the involvement of proteins which regulate the degree of PLB phosphorylation due to beta-adrenergic activation in obesity. In the present study, we hypothesized that there is an imbalance between phospholamban phosphorylation and dephosphorylation, with prevalence of protein phosphorylation. Methods: Male Wistar rats were randomly distributed into two groups: control (n = 14), fed with normocaloric diet; and obese (n = 13), fed with a cycle of four unsaturated high-fat diets. Obesity was determined by the adiposity index, and protein expressions of phosphatase 1 (PP-1), PKA, PLB, phosphorylated phospholamban at serine16 (PPLB-Ser16) were assessed by Western blot. Results: Obesity caused glucose intolerance, hyperinsulinemia, hypertriglyceridemia, hyperleptinemia and did not alter the protein expression of PKA, PP-1, PLB, PPLB-Ser16. Conclusion: Obesity does not promote an imbalance between myocardial PLB phosphorylation and dephosphorylation via beta-adrenergic system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methicillin resistant Staphylococcus aureus (MRSA) bacteria have emerged in the early 1980's in numerous health care institutions around the world. The main transmission mechanism within hospitals and healthcare facilities is through the hands of health care workers. Resistant to several antibiotics, the MRSA is one of the most feared pathogens in the hospital setting since it is very difficult to eradicate with the standard treatments. There are still a limited number of anti-MRSA antibiotics but the first cases of resistance to these compounds have already been reported and their frequency is likely to increase in the coming years. Every year, the MRSA infections result in major human and financial costs, due to the high associated mortality and expenses related to the required care. Measures towards a faster detection of resistant bacteria and establishment of appropriate antibiotic treatment parameters are fundamental. Also as part as infection prevention, diminution of bacteria present on the commonly touched surfaces could also limit the spread and selection of antibiotic resistant bacteria. During my thesis, projects were developed around MRSA and antibiotic resistance investigation using innovative technologies. The thesis was subdivided in three main parts with the use of atomic force microscopy AFM for antibiotic resistance detection in part 1, the importance of the bacterial inoculum size in the selection of antibiotic resistance in part 2 and the testing of antimicrobial surfaces creating by sputtering copper onto polyester in part 3. In part 1 the AFM was used two different ways, first for the measurement of stiffness (elasticity) of bacteria and second as a nanosensor for antibiotic susceptibility testing. The stiffness of MRSA with different susceptibility profiles to vancomycin was investigated using the stiffness tomography mode of the AFM and results have demonstrated and increased stiffness in the vancomycin resistant strains that also paralleled with increased thickness of the bacterial cell wall. Parts of the AFM were also used to build a new antibiotic susceptibility-testing device. This nano sensor was able to measure vibrations emitted from living bacteria that ceased definitively upon antibiotic exposure to which they were susceptible but restarted after antibiotic removal to which they were resistant, allowing in a matter of minute the assessment of antibiotic susceptibility determination. In part 2 the inoculum effect (IE) of vancomycin, daptomycin and linezolid and its importance in antibiotic resistance selection was investigated with MRSA during a 15 days of cycling experiment. Results indicated that a high bacterial inoculum and a prolonged antibiotic exposure were two key factors in the in vitro antibiotic resistance selection in MRSA and should be taken into consideration when choosing the drug treatment. Finally in part 3 bactericidal textile surfaces were investigated against MRSA. Polyesters coated after 160 seconds of copper sputtering have demonstrated a high bactericidal activity reducing the bacterial load of at least 3 logio after one hour of contact. -- Au cours des dernières décennies, des bactéries multirésistantes aux antibiotiques (BMR) ont émergé dans les hôpitaux du monde entier. Depuis lors, le nombre de BMR et la prévalence des infections liées aux soins (IAS) continuent de croître et sont associés à une augmentation des taux de morbidité et de mortalité ainsi qu'à des coûts élevés. De plus, le nombre de résistance à différentes classes d'antibiotiques a également augmenté parmi les BMR, limitant ainsi les options thérapeutiques disponibles lorsqu'elles ont liées a des infections. Des mesures visant une détection plus rapide des bactéries résistantes ainsi que l'établissement des paramètres de traitement antibiotiques adéquats sont primordiales lors d'infections déjà présentes. Dans une optique de prévention, la diminution des bactéries présentes sur les surfaces communément touchées pourrait aussi freiner la dissémination et l'évolution des bactéries résistantes. Durant ma thèse, différents projets incluant des nouvelles technologies et évoluant autour de la résistance antibiotique ont été traités. Des nouvelles technologies telles que le microscope à force atomique (AFM) et la pulvérisation cathodique de cuivre (PCC) ont été utilisées, et le Staphylococcus aureus résistant à la méticilline (SARM) a été la principale BMR étudiée. Deux grandes lignes de recherche ont été développées; la première visant à détecter la résistance antibiotique plus rapidement avec l'AFM et la seconde visant à prévenir la dissémination des BMR avec des surfaces crées grâce à la PCC. L'AFM a tout d'abord été utilisé en tant que microscope à sonde locale afin d'investiguer la résistance à la vancomycine chez les SARMs. Les résultats ont démontré que la rigidité de la paroi augmentait avec la résistance à la vancomycine et que celle-ci corrélait aussi avec une augmentation de l'épaisseur des parois, vérifiée grâce à la microscopie électronique. Des parties d'un AFM ont été ensuite utilisées afin de créer un nouveau dispositif de test de sensibilité aux antibiotiques, un nanocapteur. Ce nanocapteur mesure des vibrations produites par les bactéries vivantes. Après l'ajout d'antibiotique, les vibrations cessent définitivement chez les bactéries sensibles à l'antibiotique. En revanche pour les bactéries résistantes, les vibrations reprennent après le retrait de l'antibiotique dans le milieu permettant ainsi, en l'espace de minutes de détecter la sensibilité de la bactérie à un antibiotique. La PCC a été utilisée afin de créer des surfaces bactéricides pour la prévention de la viabilité des BMR sur des surfaces inertes. Des polyesters finement recouverts de cuivre (Cu), connu pour ses propriétés bactéricides, ont été produits et testés contre des SARMs. Une méthode de détection de viabilité des bactéries sur ces surfaces a été mise au point, et les polyesters obtenus après 160 secondes de pulvérisation au Cu ont démontré une excellente activité bactéricide, diminuant la charge bactérienne d'au moins 3 logio après une heure de contact. En conclusion, l'utilisation de nouvelles technologies nous a permis d'évoluer vers de méthodes de détection de la résistance antibiotique plus rapides ainsi que vers le développement d'un nouveau type de surface bactéricide, dans le but d'améliorer le diagnostic et la gestion des BMR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyhydroxyalkanoate (PHA) is a family of polymers composed primarily of R-3-hydroxyalkanoic acids. These polymers have properties of biodegradable thermoplastics and elastomers. Medium-chain-length PHAs (MCL-PHAs) are synthesized in bacteria by using intermediates of the beta-oxidation of alkanoic acids. To assess the feasibility of producing MCL-PHAs in plants, Arabidopsis thaliana was transformed with the PhaC1 synthase from Pseudomonas aeruginosa modified for peroxisome targeting by addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. Immunocytochemistry demonstrated that the modified PHA synthase was appropriately targeted to leaf-type peroxisomes in light-grown plants and glyoxysomes in dark-grown plants. Plants expressing the PHA synthase accumulated electron-lucent inclusions in the glyoxysomes and leaf-type peroxisomes, as well as in the vacuole. These inclusions were similar to bacterial PHA inclusions. Analysis of plant extracts by GC and mass spectrometry demonstrated the presence of MCL-PHA in transgenic plants to approximately 4 mg per g of dry weight. The plant PHA contained saturated and unsaturated 3-hydroxyalkanoic acids ranging from six to 16 carbons with 41% of the monomers being 3-hydroxyoctanoic acid and 3-hydroxyoctenoic acid. These results indicate that the beta-oxidation of plant fatty acids can generate a broad range of R-3-hydroxyacyl-CoA intermediates that can be used to synthesize MCL-PHAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmental research in earth sciences is focused on the geosphere, i.e. (1) waters and sediments of rivers, lakes and oceans, and (2) soils and underlying shallow rock formations,both water-unsaturated and -saturated. The subsurface is studied down to greater depths at sites where waste repositories or tunnels are planned and mining activities exist. In recent years, earth scientists have become more and more involved in pollution problems related to their classical field of interest, e.g. groundwater, ore deposits, or petroleum and non-metal natural deposits (gravel, clay, cement precursors). Major pollutants include chemical substances, radioactive isotopes and microorganisms. Mechanisms which govern the transport of pollutants are of physical, chemical (dissolution, precipitation, adsorption), or microbiological (transformation) nature. Land-use planning must reflect a sustainable development and sound scientific criteria. Today's environmental pollution requires working teams with an interdisciplinary background in earth sciences, hydrology, chemistry, biology, physics as well as engineering. This symposium brought together for the first time in Switzerland earth and soil scientists, physicists and chemists, to present and discuss environmental issues concerning the geosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-lapse crosshole ground-penetrating radar (GPR) data, collected while infiltration occurs, can provide valuable information regarding the hydraulic properties of the unsaturated zone. In particular, the stochastic inversion of such data provides estimates of parameter uncertainties, which are necessary for hydrological prediction and decision making. Here, we investigate the effect of different infiltration conditions on the stochastic inversion of time-lapse, zero-offset-profile, GPR data. Inversions are performed using a Bayesian Markov-chain-Monte-Carlo methodology. Our results clearly indicate that considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water movement in unsaturated soils gives rise to measurable electrical potential differences that are related to the flow direction and volumetric fluxes, as well as to the soil properties themselves. Laboratory and field data suggest that these so-called streaming potentials may be several orders of magnitudes larger than theoretical predictions that only consider the influence of the relative permeability and electrical conductivity on the self potential (SP) data. Recent work has improved predictions somewhat by considering how the volumetric excess charge in the pore space scales with the inverse of water saturation. We present a new theoretical approach that uses the flux-averaged excess charge, not the volumetric excess charge, to predict streaming potentials. We present relationships for how this effective excess charge varies with water saturation for typical soil properties using either the water retention or the relative permeability function. We find large differences between soil types and the predictions based on the relative permeability function display the best agreement with field data. The new relationships better explain laboratory data than previous work and allow us to predict the recorded magnitudes of the streaming potentials following a rainfall event in sandy loam, whereas previous models predict values that are three orders of magnitude too small. We suggest that the strong signals in unsaturated media can be used to gain information about fluxes (including very small ones related to film flow), but also to constrain the relative permeability function, the water retention curve, and the relative electrical conductivity function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allegre et al. recently presented new experimental data regarding the dependence of the streaming potential coupling coefficient with the saturation of the water phase. Such experiments are important to model the self-potential response associated with the flow of water in the vadose zone and the electroseismic/seismoelectric conversions in unsaturated porous media. However, the approach used to interpret the data is questionable and the conclusions reached by Allegre et al. likely incorrect

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Delta(3),Delta(2)-enoyl CoA isomerase (ECI) is an enzyme that participates in the degradation of unsaturated fatty acids through the beta-oxidation cycle. Three genes encoding Delta(3),Delta(2)-enoyl CoA isomerases and named AtECI1, AtECI2 and AtECI3 have been identified in Arabidopsis thaliana. When expressed heterologously in Saccharomyces cerevisiae, all three ECI proteins were targeted to the peroxisomes and enabled the yeast Deltaeci1 mutant to degrade 10Z-heptadecenoic acid, demonstrating Delta(3),Delta(2)-enoyl CoA isomerase activity in vivo. Fusion proteins between yellow fluorescent protein and AtECI1 or AtECI2 were targeted to the peroxisomes in onion epidermal cells and Arabidopsis root cells, but a similar fusion protein with AtECI3 remained in the cytosol for both tissues. AtECI3 targeting to peroxisomes in S. cerevisiae was dependent on yeast PEX5, while expression of Arabidopsis PEX5 in yeast failed to target AtECI3 to peroxisomes. AtECI2 and AtECI3 are tandem duplicated genes and show a high level of amino acid conservation, except at the C-terminus; AtECI2 ends with the well conserved peroxisome targeting signal 1 (PTS1) terminal tripeptide PKL, while AtECI3 possesses a divergent HNL terminal tripeptide. Evolutionary analysis of ECI genes in plants revealed several independent duplication events, with duplications occurring in rice and Medicago truncatula, generating homologues with divergent C-termini and no recognizable PTS1. All plant ECI genes analyzed, including AtECI3, are under negative purifying selection, implying functionality of the cytosolic AtECI3. Analysis of the mammalian and fungal genomes failed to identify cytosolic variants of the Delta(3),Delta(2)-enoyl CoA isomerase, indicating that evolution of cytosolic Delta(3),Delta(2)-enoyl CoA isomerases is restricted to the plant kingdom

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The provenance, half-life and biological activity of malondialdehyde (MDA) were investigated in Arabidopsis thaliana. We provide genetic confirmation of the hypothesis that MDA originates from fatty acids containing more than two methylene-linked double bonds, showing that tri-unsaturated fatty acids are the in vivo source of up to 75% of MDA. The abundance of the combined pool of free and reversibly bound MDA did not change dramatically in stress, although a significant increase in the free MDA pool under oxidative conditions was observed. The half-life of infiltrated MDA indicated rapid metabolic turnover/sequestration. Exposure of plants to low levels of MDA using a recently developed protocol powerfully upregulated many genes on a cDNA microarray with a bias towards those implicated in abiotic/environmental stress (e.g. ROF1 and XERO2). Remarkably, and in contrast to the activities of other reactive electrophile species (i.e. small vinyl ketones), none of the pathogenesis-related (PR) genes tested responded to MDA. The use of structural mimics of MDA isomers suggested that the propensity of the molecule to act as a cross-linking/modifying reagent might contribute to the activation of gene expression. Changes in the concentration/localisation of unbound MDA in vivo could strongly affect stress-related transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clinically and experimentally, a case for omega-3 polyunsaturated fatty acid (PUFA) cardioprotection in females has not been clearly established. The goal of this study was to investigate whether dietary omega-3 PUFA supplementation could provide ischemic protection in female mice with an underlying genetic predisposition to cardiac hypertrophy. Mature female transgenic mice (TG) with cardiac-specific overexpression of angiotensinogen that develop normotensive cardiac hypertrophy and littermate wild-type (WT) mice were fed a fish oil-derived diet (FO) or PUFA-matched control diet (CTR) for 4 wk. Myocardial membrane lipids, ex vivo cardiac performance (intraventricular balloon) after global no-flow ischemia and reperfusion (15/30 min), and reperfusion arrhythmia incidence were assessed. FO diet suppressed cardiac growth by 5% and 10% in WT and TG, respectively (P < 0.001). The extent of mechanical recovery [rate-pressure product (RPP) = beats/min x mmHg] of FO-fed WT and TG hearts was similar (50 +/- 7% vs. 45 +/- 12%, 30 min reperfusion), and this was not significantly different from CTR-fed WT or TG. To evaluate whether systemic estrogen was masking a protective effect of the FO diet, the responses of ovariectomized (OVX) WT and TG mice to FO dietary intervention were assessed. The extent of mechanical recovery of FO-fed OVX WT and TG (RPP, 50 +/- 4% vs. 64 +/- 8%) was not enhanced compared with CTR-fed mice (RPP, 60 +/- 11% vs. 80 +/- 8%, P = 0.335). Dietary FO did not suppress the incidence of reperfusion arrhythmias in WT or TG hearts (ovary-intact mice or OVX). Our findings indicate a lack of cardioprotective effect of dietary FO in females, determined by assessment of mechanical and arrhythmic activity postischemia in a murine ex vivo heart model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fatty acid and sterol analysis were performed on Phytomonas serpens and Phytomonas sp. grown in chemically defined and complex medium, and P. françai cultivated in complex medium. The three species of the genus Phytomonas had qualitatively identical fatty acid patterns. Oleic, linoleic, and linolenic were the major unsaturated fatty acids. Miristic and stearic were the major saturated fatty acids. Ergosterol was the only sterol isolated from Phytmonas sp. and P. serpens grown in a sterol-free medium, indicating that it was synthesized de novo. When P. françai that does not grow in defined medium was cultivated in a complex medium, cholesterol was the only sterol detected. The fatty acids and sterol isolated from Phytomonas sp. and P. serpens grown in a chemically defined lipid-free medium indicated that they were able to biosynthesize fatty acids and ergosterol from acetate or from acetate precursors such as glucose or threonine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estudi realitzat a partir d’una estada a la Universidad de Zaragoza, Espanya, entre novembre del 2007 i abril del 2008. Mycobacterium vaccae és un micobacteri ambiental de creixement ràpid molt estudiat pel seu interès com a possible ús immunoterapéutic en el tractament de la tuberculosis i altres malalties. M.vaccae a l’igual que altres micobacteris presenta dues morfologies colonials: llisa i rugosa. M.vaccae ATCC15483T té originàriament una morfologia llisa. Quant aquest es cultiva en medi sòlid a 30ºC apareixen espontàniament variants rugoses estables que no reverteixen a llises. El motiu pel qual aquest procés té lloc no es coneix, encara que s’ha descrit en Mycobacterium smegmatis i en Mycobacterium avium que els lípids de la paret cel•lular es troben involucrats en aquest canvi de morfologia colonial. L’anàlisi dels contingut en lípids i glicolípids de la paret cel•lular de les dos variants morfològiques de M.vaccae, ens ha indicat que les soques llises presenten un compost extracel•lular que no es troba en les rugoses i que mitjançant l’anàlisi estructural d’aquest compost ha sigut identificat com un polièster extracel•lular de cadena llarga. El present estudi s’ha centrat en determinar els gens implicats en la síntesis d’aquest compost. Per a realitzar aquest anàlisi genètic s’ha construit una llibreria de mutants per transposició de la soca llisa de M. vaccae mitjançant un plàsmid ts/sac i un transposó. S’han obtingut colònies de morfologia rugosa on el plàsmid s’ha insertat en la zona del genoma que codifica per aquest compost extracel•lular. Aquests nous mutants s’han analitzat mitjançant tècniques moleculars (PCR, Southern y seqüenciació). A mès, s’ha construit una llibreria genòmica amb DNA de la soca llisa en plàsmids replicatius de micobacteris derivats de pAL5000 i s’ha transformat la soca rugosa seleccionant per a un fenotip llis estudiant els gens que complementen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whole-body (WB) planar imaging has long been one of the staple methods of dosimetry, and its quantification has been formalized by the MIRD Committee in pamphlet no 16. One of the issues not specifically addressed in the formalism occurs when the count rates reaching the detector are sufficiently high to result in camera count saturation. Camera dead-time effects have been extensively studied, but all of the developed correction methods assume static acquisitions. However, during WB planar (sweep) imaging, a variable amount of imaged activity exists in the detector's field of view as a function of time and therefore the camera saturation is time dependent. A new time-dependent algorithm was developed to correct for dead-time effects during WB planar acquisitions that accounts for relative motion between detector heads and imaged object. Static camera dead-time parameters were acquired by imaging decaying activity in a phantom and obtaining a saturation curve. Using these parameters, an iterative algorithm akin to Newton's method was developed, which takes into account the variable count rate seen by the detector as a function of time. The algorithm was tested on simulated data as well as on a whole-body scan of high activity Samarium-153 in an ellipsoid phantom. A complete set of parameters from unsaturated phantom data necessary for count rate to activity conversion was also obtained, including build-up and attenuation coefficients, in order to convert corrected count rate values to activity. The algorithm proved successful in accounting for motion- and time-dependent saturation effects in both the simulated and measured data and converged to any desired degree of precision. The clearance half-life calculated from the ellipsoid phantom data was calculated to be 45.1 h after dead-time correction and 51.4 h with no correction; the physical decay half-life of Samarium-153 is 46.3 h. Accurate WB planar dosimetry of high activities relies on successfully compensating for camera saturation which takes into account the variable activity in the field of view, i.e. time-dependent dead-time effects. The algorithm presented here accomplishes this task.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteria can survive on hospital textiles and surfaces, from which they can be disseminated, representing a source of health care-associated infections (HCAIs). Surfaces containing copper (Cu), which is known for its bactericidal properties, could be an efficient way to lower the burden of potential pathogens. The antimicrobial activity of Cu-sputtered polyester surfaces, obtained by direct-current magnetron sputtering (DCMS), against methicillin-resistant Staphylococcus aureus (MRSA) was tested. The Cu-polyester microstructure was characterized by high-resolution transmission electron microscopy to determine the microstructure of the Cu nanoparticles and by profilometry to assess the thickness of the layers. Sputtering at 300 mA for 160 s led to a Cu film thickness of 20 nm (100 Cu layers) containing 0.209% (wt/wt) polyester. The viability of MRSA strain ATCC 43300 on Cu-sputtered polyester was evaluated by four methods: (i) mechanical detachment, (ii) microcalorimetry, (iii) direct transfer onto plates, and (iv) stereomicroscopy. The low efficacy of mechanical detachment impeded bacterial viability estimations. Microcalorimetry provided only semiquantitative results. Direct transfer onto plates and stereomicroscopy seemed to be the most suitable methods to evaluate the bacterial inactivation potential of Cu-sputtered polyester surfaces, since they presented the least experimental bias. Cu-polyester samples sputtered for 160 s by DCMS were further tested against 10 clinical MRSA isolates and showed a high level of bactericidal activity, with a 4-log(10) reduction in the initial MRSA load (10(6) CFU) within 1 h. Cu-sputtered polyester surfaces might be of use to prevent the transmission of HCAI pathogens.