851 resultados para The Real
Resumo:
This paper explores an innovative model for work-integrated learning using a virtual paradigm – The Virtual Law Placement Unit at Queensland University of Technology (QUT) Australia. It builds upon the conceptual model previously explored at WACE 2007 and provides an account of the lessons learned from the pilot offering of the unit which was conducted and evaluated in 2008. ----- The Virtual Placement Unit offers students the opportunity to complete an authentic workplace task under the guidance of a real-life workplace supervisor, where student-student communication and student-supervisor communication is all conducted virtually (and potentially asynchronously) to create an engaging but flexible learning environment using a combination of Blackboard and SharePoint technologies. This virtual experience is pioneering in the sense that it enables law students to access an unprecedented range of law graduate destination workplaces and projects, including international and social justice placements, absent the constraints traditionally associated with arranging physical placements. ----- All aspects of this unit have been designed in conjunction with community partners with a view to balancing student learning objectives with community needs through co-operative education. This paper will also explore how the implementation of the project is serving to strengthen those partnerships with the wider community, simultaneously addressing the community engagement agenda of the University and enabling students to engage meaningfully with local, national and international community partners in the real world of work.
Resumo:
Inclusive education practices call for the diverse and individual needs of all students to be met satisfactorily. The needs and experiences of artistically talented students in Australian visual art classrooms are currently unknown. This study addresses this gap in research through an inquiry into the experiences of artistically talented students and their teachers in visual art classrooms, by examining the accounts of a group of students and teachers at one high school in South East Queensland. This study is significant as it provides teachers, parents and others involved in the education of artistically talented students with additional means to plan and cater for the educational needs of artistically talented students. Teacher and student accounts of the visual art classroom in this study indicated that identification processes for artistically talented students are unclear and contradictory. Furthermore, teacher and student accounts of their experiences presented a wide variety of conceptions of the visual art classroom and point towards an individualised approach to learning for artistically talented students. This study also discovered a mismatch between assessment practices in the subject visual art and assessment of art in the ‘real world’. Specifically, this study proposes a renewal of programs for artistically talented students, and recommends a revision of current procedures for the identification of artistically talented students in visual art classrooms.
Resumo:
Concern regarding the health effects of indoor air quality has grown in recent years, due to the increased prevalence of many diseases, as well as the fact that many people now spend most of their time indoors. While numerous studies have reported on the dynamics of aerosols indoors, the dynamics of bioaerosols in indoor environments are still poorly understood and very few studies have focused on fungal spore dynamics in indoor environments. Consequently, this work investigated the dynamics of fungal spores in indoor air, including fungal spore release and deposition, as well as investigating the mechanisms involved in the fungal spore fragmentation process. In relation to the investigation of fungal spore dynamics, it was found that the deposition rates of the bioaerosols (fungal propagules) were in the same range as the deposition rates of nonbiological particles and that they were a function of their aerodynamic diameters. It was also found that fungal particle deposition rates increased with increasing ventilation rates. These results (which are reported for the first time) are important for developing an understanding of the dynamics of fungal spores in the air. In relation to the process of fungal spore fragmentation, important information was generated concerning the airborne dynamics of the spores, as well as the part/s of the fungi which undergo fragmentation. The results obtained from these investigations into the dynamics of fungal propagules in indoor air significantly advance knowledge about the fate of fungal propagules in indoor air, as well as their deposition in the respiratory tract. The need to develop an advanced, real-time method for monitoring bioaerosols has become increasingly important in recent years, particularly as a result of the increased threat from biological weapons and bioterrorism. However, to date, the Ultraviolet Aerodynamic Particle Sizer (UVAPS, Model 3312, TSI, St Paul, MN) is the only commercially available instrument capable of monitoring and measuring viable airborne micro-organisms in real-time. Therefore (for the first time), this work also investigated the ability of the UVAPS to measure and characterise fungal spores in indoor air. The UVAPS was found to be sufficiently sensitive for detecting and measuring fungal propagules. Based on fungal spore size distributions, together with fluorescent percentages and intensities, it was also found to be capable of discriminating between two fungal spore species, under controlled laboratory conditions. In the field, however, it would not be possible to use the UVAPS to differentiate between different fungal spore species because the different micro-organisms present in the air may not only vary in age, but may have also been subjected to different environmental conditions. In addition, while the real-time UVAPS was found to be a good tool for the investigation of fungal particles under controlled conditions, it was not found to be selective for bioaerosols only (as per design specifications). In conclusion, the UVAPS is not recommended for use in the direct measurement of airborne viable bioaerosols in the field, including fungal particles, and further investigations into the nature of the micro-organisms, the UVAPS itself and/or its use in conjunction with other conventional biosamplers, are necessary in order to obtain more realistic results. Overall, the results obtained from this work on airborne fungal particle dynamics will contribute towards improving the detection capabilities of the UVAPS, so that it is capable of selectively monitoring and measuring bioaerosols, for which it was originally designed. This work will assist in finding and/or improving other technologies capable of the real-time monitoring of bioaerosols. The knowledge obtained from this work will also be of benefit in various other bioaerosol applications, such as understanding the transport of bioaerosols indoors.
Resumo:
the (dis)orientation of thought in its encounter with art can be understood as the direct result of an encounter with indeterminacy as a lack in meaning. As an artist I am aware of how this indeterminacy impacts on the perceived value and authority of the artistic voice and in particular its value as a research voice. This paper explores this indeterminacy of meaning, as a profound and disturbing unknowing characteristic of the sublime and argues its value to advanced thought and for any methodological understanding of practice-led research. Lyotard described the sublime as an ‘understanding’ through which art and its associated practices may be able to resist an all too easy assimilation by the public as just a consumer commodity. His thought represents an attempt to both politically and philosophically understand art’s, and particularly abstract painting’s, affect as a state of profound and positive unknowing. To talk of the sublime in art is to speak of the suspension of any comfortable certainty in being and instead to engage with the real as a limit to meaning and knowing. It is to talk of the presentation of the unpresentable as a momentary but significant dissolution of representation. This understanding of the sublime is then further explored through the cultural phenomena of the monochrome painting and applied to the work of the two contemporary artists, Franz Erhard Walter and Günter Umberg. Initially the monochrome was understood as an attempt to go beyond traditional representation and present the unpresentable. In the one hundred years or so since that initial move this understanding has broadened. The monochrome now presents itself as a genre or even project within visual art but it still has much to teach us. In the concretely abstract and performative artworks of Franz Erhard Walter and Günter Umberg, traces of this ambition remain and their work can be seen to pose questions probing our understandings and experiences of artistic meaning, its value and the real.
Resumo:
Presbyopia affects individuals from the age of 45 years onwards, resulting in difficulty in accurately focusing on near objects. There are many optical corrections available including spectacles or contact lenses that are designed to enable presbyopes to see clearly at both far and near distances. However, presbyopic vision corrections also disturb aspects of visual function under certain circumstances. The impact of these changes on activities of daily living such as driving are, however, poorly understood. Therefore, the aim of this study was to determine which aspects of driving performance might be affected by wearing different types of presbyopic vision corrections. In order to achieve this aim, three experiments were undertaken. The first experiment involved administration of a questionnaire to compare the subjective driving difficulties experienced when wearing a range of common presbyopic contact lens and spectacle corrections. The questionnaire was developed and piloted, and included a series of items regarding difficulties experienced while driving under day and night-time conditions. Two hundred and fifty five presbyopic patients responded to the questionnaire and were categorised into five groups, including those wearing no vision correction for driving (n = 50), bifocal spectacles (BIF, n = 54), progressive addition lenses spectacles (PAL, n = 50), monovision (MV, n = 53) and multifocal contact lenses (MTF CL, n = 48). Overall, ratings of satisfaction during daytime driving were relatively high for all correction types. However, MV and MTF CL wearers were significantly less satisfied with aspects of their vision during night-time than daytime driving, particularly with regard to disturbances from glare and haloes. Progressive addition lens wearers noticed more distortion of peripheral vision, while BIF wearers reported more difficulties with tasks requiring changes in focus and those who wore no vision correction for driving reported problems with intermediate and near tasks. Overall, the mean level of satisfaction for daytime driving was quite high for all of the groups (over 80%), with the BIF wearers being the least satisfied with their vision for driving. Conversely, at night, MTF CL wearers expressed the least satisfaction. Research into eye and head movements has become increasingly of interest in driving research as it provides a means of understanding how the driver responds to visual stimuli in traffic. Previous studies have found that wearing PAL can affect eye and head movement performance resulting in slower eye movement velocities and longer times to stabilize the gaze for fixation. These changes in eye and head movement patterns may have implications for driving safety, given that the visual tasks for driving include a range of dynamic search tasks. Therefore, the second study was designed to investigate the influence of different presbyopic corrections on driving-related eye and head movements under standardized laboratory-based conditions. Twenty presbyopes (mean age: 56.1 ± 5.7 years) who had no experience of wearing presbyopic vision corrections, apart from single vision reading spectacles, were recruited. Each participant wore five different types of vision correction: single vision distance lenses (SV), PAL, BIF, MV and MTF CL. For each visual condition, participants were required to view videotape recordings of traffic scenes, track a reference vehicle and identify a series of peripherally presented targets while their eye and head movements were recorded using the faceLAB® eye and head tracking system. Digital numerical display panels were also included as near visual stimuli (simulating the visual displays of a vehicle speedometer and radio). The results demonstrated that the path length of eye movements while viewing and responding to driving-related traffic scenes was significantly longer when wearing BIF and PAL than MV and MTF CL. The path length of head movements was greater with SV, BIF and PAL than MV and MTF CL. Target recognition was less accurate when the near stimulus was located at eccentricities inferiorly and to the left, rather than directly below the primary position of gaze, regardless of vision correction type. The third experiment aimed to investigate the real world driving performance of presbyopes while wearing different vision corrections measured on a closed-road circuit at night-time. Eye movements were recorded using the ASL Mobile Eye, eye tracking system (as the faceLAB® system proved to be impractical for use outside of the laboratory). Eleven participants (mean age: 57.25 ± 5.78 years) were fitted with four types of prescribed vision corrections (SV, PAL, MV and MTF CL). The measures of driving performance on the closed-road circuit included distance to sign recognition, near target recognition, peripheral light-emitting-diode (LED) recognition, low contrast road hazards recognition and avoidance, recognition of all the road signs, time to complete the course, and driving behaviours such as braking, accelerating, and cornering. The results demonstrated that driving performance at night was most affected by MTF CL compared to PAL, resulting in shorter distances to read signs, slower driving speeds, and longer times spent fixating road signs. Monovision resulted in worse performance in the task of distance to read a signs compared to SV and PAL. The SV condition resulted in significantly more errors made in interpreting information from in-vehicle devices, despite spending longer time fixating on these devices. Progressive addition lenses were ranked as the most preferred vision correction, while MTF CL were the least preferred vision correction for night-time driving. This thesis addressed the research question of how presbyopic vision corrections affect driving performance and the results of the three experiments demonstrated that the different types of presbyopic vision corrections (e.g. BIF, PAL, MV and MTF CL) can affect driving performance in different ways. Distance-related driving tasks showed reduced performance with MV and MTF CL, while tasks which involved viewing in-vehicle devices were significantly hampered by wearing SV corrections. Wearing spectacles such as SV, BIF and PAL induced greater eye and head movements in the simulated driving condition, however this did not directly translate to impaired performance on the closed- road circuit tasks. These findings are important for understanding the influence of presbyopic vision corrections on vision under real world driving conditions. They will also assist the eye care practitioner to understand and convey to patients the potential driving difficulties associated with wearing certain types of presbyopic vision corrections and accordingly to support them in the process of matching patients to optical corrections which meet their visual needs.
Resumo:
In teaching introductory economics there has been a tendency to put a lot of emphasis on imparting abstract models and technical skills to students (Stilwell, 2005; Voss, Blais, Greens, & Ahwesh, 1986). This model building approach has the merit of preparing the grounding for students 10 pursue further studies in economics. However, in a business degree with only a small proportion of students majoring in economics, such an approach tend to alienate the majority of students transiting from high school in to university. Surveys in Europe and Australia found that students complained about the lack of relevance of economics courses to the real world and the over-reliance of abstract mathematical modelling (Kirman, 2001; Lewis and Norris, 1997; Siegfried & Round, 2000). BSB112 Economics 1 is one of the eight faculty core units in the Faculty of Business at QUT, with over 1000 students in each semester. In semester I 2008, a new approach to teaching this unit was designed aiming to achieve three inter-related objectives: (1) to provide business students with a first insight into economic thinking and language, (2) to integrate economic analysis with current Australian social, environmental and political issues, and (3) to cater for students with a wide range of academic needs. Strategies used to achieve these objectives included writing up a new text which departs from traditional economics textbooks in important ways, integrating students' cultures in teaching and learning activities, and devising a new assessment format to encourage development of research skills and applications rather than reproduction of factual knowledge. This paper will document the strategies used in this teaching innovation, present quantitative and qualitative evidence to evaluate this new approach and suggest ways of further improvement.
Resumo:
Public transportation is an environment with great potential for applying location-based services through mobile devices. This paper provides the underpinning rationale for research that will be looking at how the real-time passenger information system deployed by the Translink Transit Authority across all of South East Queensland in Australia can provide a core platform to improve commuters’ user experiences. This system relies on mobile computing and GPS technology to provide accurate information on transport vehicle locations. The proposal builds on this platform to inform the design and development of innovative social media, mobile computing and geospatial information applications. The core aim is to digitally augment the public transport environment to enhance the user experience of commuters for a more enjoyable journey.
Resumo:
Driver simulators provide safe conditions to assess driver behaviour and provide controlled and repeatable environments for study. They are a promising research tool in terms of both providing safety and experimentally well controlled environments. There are wide ranges of driver simulators, from laptops to advanced technologies which are controlled by several computers in a real car mounted on platforms with six degrees of freedom of movement. The applicability of simulator-based research in a particular study needs to be considered before starting the study, to determine whether the use of a simulator is actually appropriate for the research. Given the wide range of driver simulators and their uses, it is important to know beforehand how closely the results from a driver simulator match results found in the real word. Comparison between drivers’ performance under real road conditions and in particular simulators is a fundamental part of validation. The important question is whether the results obtained in a simulator mirror real world results. In this paper, the results of the most recently conducted research into validity of simulators is presented.
Resumo:
This paper discusses a new paradigm of real-time simulation of power systems in which equipment can be interfaced with a real-time digital simulator. In this scheme, one part of a power system can be simulated by using a real-time simulator; while the other part is implemeneted as a physical system. The only interface of the physical system with the computer-based simulator is through data-acquisition system. The physical system is driven by a voltage-source converter (VSC)that mimics the power system simulated in the real-time simulator. In this papar, the VSC operates in a voltage-control mode to track the point of common coupling voltage signal supplied by the digital simulator. This type of splitting a network in two parts and running a real-time simulation with a physical system in parallel is called a power network in loop here. this opens up the possibility of study of interconnection o f one or several distributed generators to a complex power network. The proposed implementation is verified through simulation studies using PSCAD/EMTDC and through hardware implementation on a TMS320G2812 DSP.
Resumo:
The Rudd Labour Government rode to power in Australia on the education promise of 'an education revolution'. The term 'education revolution' carries all the obligatory marketing metaphors that an aspirant government might want recognised by the general public on the eve government came to power however in revolutionary terms it fades into insignificance in comparison to the real revolution in Australian education. This revolution simply put is to elevate Indigenous Knowledge Systems, in Australian Universities. In the forty three years since the nation setting Referendum of 1967 a generation has made a beach head on the educational landscape. Now a further generation who having made it into the field of higher degrees yearn for the ways and means to authentically marshal Indigenous knowledge? The Institute of Koorie Education at Deakin has for over twenty years not only witnessed the transition but is also a leader in the field. With the appointment of two Chairs of Indigenous Knowledge Systems to build on to its already established research profile the Institute moved towards what is the 'real revolution' in education – the elevation of Indigenous Knowledge as a legitimate knowledge system. This paper lays out the Institute of Koorie Education‘s Research Plan and the basis of an argument put to the academy that will be the driver for this pursuit.
Resumo:
The human knee acts as a sophisticated shock absorber during landing movements. The ability of the knee to perform this function in the real world is remarkable given that the context of the landing movement may vary widely between performances. For this reason, humans must be capable of rapidly adjusting the mechanical properties of the knee under impact load in order to satisfy many competing demands. However, the processes involved in regulating these properties in response to changing constraints remain poorly understood. In particular, the effects of muscle fatigue on knee function during step landing are yet to be fully explored. Fatigue of the knee muscles is significant for 2 reasons. First, it is thought to have detrimental effects on the ability of the knee to act as a shock absorber and is considered a risk factor for knee injury. Second, fatigue of knee muscles provides a unique opportunity to examine the mechanisms by which healthy individuals alter knee function. A review of the literature revealed that the effect of fatigue on knee function during landing has been assessed by comparing pre and postfatigue measurements, with fatigue induced by a voluntary exercise protocol. The information is limited by inconsistent results with key measures, such as knee stiffness, showing varying results following fatigue, including increased stiffness, decreased stiffness or failure to detect any change in some experiments. Further consideration of the literature questions the validity of the models used to induce and measure fatigue, as well as the pre-post study design, which may explain the lack of consensus in the results. These limitations cast doubt on the usefulness of the available information and identify a need to investigate alternative approaches. Based on the results of this review, the aims of this thesis were to: • evaluate the methodological procedures used in validation of a fatigue model • investigate the adaptation and regulation of post-impact knee mechanics during repeated step landings • use this new information to test the effects of fatigue on knee function during a step-landing task. To address the aims of the thesis, 3 related experiments were conducted that collected kinetic, kinematic and electromyographic data from 3 separate samples of healthy male participants. The methodologies involved optoelectronic motion capture (VICON), isokinetic dynamometry (System3 Pro, BIODEX) and wireless surface electromyography (Zerowire, Aurion, Italy). Fatigue indicators and knee function measures used in each experiment were derived from the data. Study 1 compared the validity and reliability of repetitive stepping and isokinetic contractions with respect to fatigue of the quadriceps and hamstrings. Fifteen participants performed 50 repetitions of each exercise twice in randomised order, over 4 sessions. Sessions were separated by a minimum of 1 week’s rest, to ensure full recovery. Validity and reliability depended on a complex interaction between the exercise protocol, the fatigue indicator, the individual and the muscle of interest. Nevertheless, differences between exercise protocols indicated that stepping was less effective in eliciting valid and reliable changes in peak power and spectral compression, compared with isokinetic exercise. A key finding was that fatigue progressed in a biphasic pattern during both exercises. The point separating the 2 phases, known as the transition point, demonstrated superior between-test reliability during the isokinetic protocol, compared with stepping. However, a correction factor should be used to accurately apply this technique to the study of fatigue during landing. Study 2 examined alterations in knee function during repeated landings, with a different sample (N =12) performing 60 consecutive step landing trials. Each landing trial was separated by 1-minute rest periods. The results provided new information in relation to the pre-post study design in the context of detecting adjustments in knee function during landing. First, participants significantly increased or decreased pre-impact muscle activity or post-impact mechanics despite environmental and task constraints remaining unchanged. This is the 1st study to demonstrate this effect in healthy individuals without external feedback on performance. Second, single-subject analysis was more effective in detecting alterations in knee function compared to group-level analysis. Finally, repeated landing trials did not reduce inter-trial variability of knee function in some participants, contrary to assumptions underpinning previous studies. The results of studies 1 and 2 were used to modify the design of Study 3 relative to previous research. These alterations included a modified isokinetic fatigue protocol, multiple pre-fatigue measurements and singlesubject analysis to detect fatigue-related changes in knee function. The study design incorporated new analytical approaches to investigate fatiguerelated alterations in knee function during landing. Participants (N = 16) were measured during multiple pre-fatigue baseline trial blocks prior to the fatigue model. A final block of landing trials was recorded once the participant met the operational fatigue definition that was identified in Study 1. The analysis revealed that the effects of fatigue in this context are heavily dependent on the compensatory response of the individual. A continuum of responses was observed within the sample for each knee function measure. Overall, preimpact preparation and post-impact mechanics of the knee were altered with highly individualised patterns. Moreover, participants used a range of active or passive pre-impact strategies to adapt post-impact mechanics in response to quadriceps fatigue. The unique patterns identified in the data represented an optimisation of knee function based on priorities of the individual. The findings of these studies explain the lack of consensus within the literature regarding the effects of fatigue on knee function during landing. First, functional fatigue protocols lack validity in inducing fatigue-related changes in mechanical output and spectral compression of surface electromyography (sEMG) signals, compared with isokinetic exercise. Second, fatigue-related changes in knee function during landing are confounded by inter-individual variation, which limits the sensitivity of group-level analysis. By addressing these limitations, the 3rd study demonstrated the efficacies of new experimental and analytical approaches to observe fatigue-related alterations in knee function during landing. Consequently, this thesis provides new perspectives into the effects of fatigue in knee function during landing. In conclusion: • The effects of fatigue on knee function during landing depend on the response of the individual, with considerable variation present between study participants, despite similar physical characteristics. • In healthy males, adaptation of pre-impact muscle activity and postimpact knee mechanics is unique to the individual and reflects their own optimisation of demands such as energy expenditure, joint stability, sensory information and loading of knee structures. • The results of these studies should guide future exploration of adaptations in knee function to fatigue. However, research in this area should continue with reduced emphasis on the directional response of the population and a greater focus on individual adaptations of knee function.
Resumo:
This article examines the moment of exchange between artist, audience and culture in Live Art. Drawing on historical and contemporary examples, including examples from the Exist in 08 Live Art Event in Brisbane, Australia, in October 2008, it argues that Live Art - be it body art, activist art, site-specific performance, or other sorts of performative intervention in the public sphere - is characterised by a common set of claims about activating audiences, asking them to reflect on cultural norms challenged in the work. Live Art presents risky actions, in a context that blurs the boundaries between art and reality, to position audients as ‘witnesses’ who are personally implicated in, and responsible for, the actions unfolding before them. This article problematises assumptions about the way the uncertainties embedded in the Live Art encounter contribute to its deconstructive agenda. It uses the ethical theory of Emmanuel Levinas, Hans-Thies Lehmann and Dwight Conquergood to examine the mechanics of reductive, culturally-recuperative readings that can limit the efficacy of the Live Art encounter. It argues that, though ‘witnessing’ in Live Art depends on a relation to the real - real people, taking real risks, in real places - if it fails to foreground theatrical frame it is difficult for audients to develop the dual consciousness of the content, and their complicity in that content, that is the starting point for reflexivity, and response-ability, in the ethical encounter.
Resumo:
Sustainability Declarations were introduced by the Queensland State Government on 1 January 2010 as a compulsory measure for all dwelling sales. The purpose of this policy decision was to improve the relevance of sustainability in the home ownership decision making process. This paper assesses the initial impact of this initiative over its first year in operation. In partnership with the Real Estate Institute of Queensland, real estate agents and salespeople in Queensland were surveyed to determine what impact the Sustainability Declaration has had on home buyer decision making. The level of compliance by the real estate industry was also reviewed. These preliminary findings indicate a high level of compliance from the real estate industry, however results confirm that sustainability is yet to become a criterion of relevance to the majority of home buyers in Queensland. The Sustainability Declarations are a first step in raising awareness in home owners of the importance of sustainability in housing. Further monitoring of this impact will be carried out over time.
A Modified inverse integer Cholesky decorrelation method and the performance on ambiguity resolution
Resumo:
One of the research focuses in the integer least squares problem is the decorrelation technique to reduce the number of integer parameter search candidates and improve the efficiency of the integer parameter search method. It remains as a challenging issue for determining carrier phase ambiguities and plays a critical role in the future of GNSS high precise positioning area. Currently, there are three main decorrelation techniques being employed: the integer Gaussian decorrelation, the Lenstra–Lenstra–Lovász (LLL) algorithm and the inverse integer Cholesky decorrelation (IICD) method. Although the performance of these three state-of-the-art methods have been proved and demonstrated, there is still a potential for further improvements. To measure the performance of decorrelation techniques, the condition number is usually used as the criterion. Additionally, the number of grid points in the search space can be directly utilized as a performance measure as it denotes the size of search space. However, a smaller initial volume of the search ellipsoid does not always represent a smaller number of candidates. This research has proposed a modified inverse integer Cholesky decorrelation (MIICD) method which improves the decorrelation performance over the other three techniques. The decorrelation performance of these methods was evaluated based on the condition number of the decorrelation matrix, the number of search candidates and the initial volume of search space. Additionally, the success rate of decorrelated ambiguities was calculated for all different methods to investigate the performance of ambiguity validation. The performance of different decorrelation methods was tested and compared using both simulation and real data. The simulation experiment scenarios employ the isotropic probabilistic model using a predetermined eigenvalue and without any geometry or weighting system constraints. MIICD method outperformed other three methods with conditioning improvements over LAMBDA method by 78.33% and 81.67% without and with eigenvalue constraint respectively. The real data experiment scenarios involve both the single constellation system case and dual constellations system case. Experimental results demonstrate that by comparing with LAMBDA, MIICD method can significantly improve the efficiency of reducing the condition number by 78.65% and 97.78% in the case of single constellation and dual constellations respectively. It also shows improvements in the number of search candidate points by 98.92% and 100% in single constellation case and dual constellations case.
Resumo:
Despite having a band of greenness around the edge, Australia is fundamentally a dry country. Australian vegetation has developed a high range of mechanisms to cope with the dryness, but after 200 years of white settlement, Australians still have not really come to terms with the real dryness of their country, and still exploit European paradigms that attempted to transplant European aesthetic conditions, greenness, to the brown land of Australia. Australia is going through serious water shortages that are still and will continue with the Greenhouse effect, to become a major factor in the location and extent of urbanisation, and also Australia's carrying capacity. While such aesthetic concerns might seem ornamental, until the population changes its attitude to the real condition of the country, it will keep using water and operating unsustainably. The design of the public landscape, however, offers the opportunity to contribute to changing people's aesthetic perception of the country, which might in turn help to redirect their water use practices. This essay develops a language for discussion dryness based around the experiences of water. After having developed this sensibility it then discusses a range of different approaches that landscape design in Australia has used to try to develop geographically appropriate design languages, including the Bush Garden and the Mediterranean Garden. It then discusses four design projects, one from the 1970's, the other three from the last five years that demonstrate what such an aesthetic might look like.