788 resultados para Textile absorbent
Disruptive Threads and Renegade Yarns: Domestic Textile Making in Selected Women's Writing 1811-1925
Resumo:
Images of domestic textiles (items made at home for consumption within the household) and textile making form an important subtext to women’s writing, both during and after industrialization. Through a close reading of five novels from the period 1811-1925, this thesis will assert that a detailed understanding of textile work and its place in women’s daily lives is critical to a deeper understanding of social, sexual and political issues from a woman’s perspective. The first chapter will explore the history of the relationship between women and domestic textile making, and the changes wrought to the latter by the Industrial Revolution. The second chapter will examine the role of embroidery in the construction of “appropriate” feminine gentility in Jane Austen’s Mansfield Park (1814). The third chapter, on Elizabeth Gaskell’s Cranford (1853), will explore how the older female body became a repository for anxieties about class mobility and female power at the beginning of the Victorian era. The fourth chapter will compare Sara Jeannette Duncan’s A Social Departure (1890) and Kate Chopin’s The Awakening (1899) to consider how later Victorian women both internalized and refuted public narratives of domestic textile making in a quest for “self-ownership.” The last chapter, on Martha Ostenso’s Wild Geese (1925), examines the corrosive, yet ultimately redemptive, relationships of a family of women trapped by abuse and degradation. For all five authors, images of textiles and textile making allow them to speak to issues that were usually only discussed within a community of women: sexuality, desire, aging, marriage, and motherhood. In all five works, textile making “talks back” to the power structures that marginalize women, and lends insight into the material and emotional circumstances of women’s lives.
Resumo:
Hochfeste Faserseile sind aufgrund ihrer hohen spezifischen Festigkeit prädestiniert für dynamische Anwendungen in der Fördertechnik. Der Kenntnisstand über die Zeitfestigkeit zugehöriger Endverbindungen zur Krafteinleitung ist jedoch unzureichend. Gegenstand der vorgelegten Arbeit ist die Entwicklung einer für die Anwendung von hochfesten Faserseilen geeigneten Prüfvorschrift sowie die vergleichende Untersuchung bekannter Endverbindungen für hochfeste Faserseile im Zugschwellversuch.
Resumo:
This research takes a practice-based approach to exploring perceptual matters that often go unnoticed in the context of everyday lived experience. My approach focuses on the experiential possibilities of knowledge emerging through artistic enquiry, and uses a variety of modes (like textiles, sound, physical computing, programming, video and text) to be conducted and communicated. It examines scholarship in line with the ecological theory of perception, and is particularly informed by neurobiological research on sensory integration as well as by cultural theories that examine the role of sensory appreciation in perception. Different processes contributing to our perceptual experience are examined through the development of a touch-sensitive, sound-generating rug and its application in an experimental context. Participants’ interaction with the rug and its sonic output allows an insight into how they make sense of multisensory information via observation of how they physically respond to it. In creating possibilities for observing the two ends of the perceptual process (sensory input and behavioural output), the rug provides a platform for the study of what is intangible to the observer (perceptual activity) through what can actually be observed (physical activity). My analysis focuses on video recordings of the experimental process and data reports obtained from the software used for the sound generating performance of the rug. Its findings suggest that attentional focus, active exploration, and past experience actively affect the ability to integrate multisensory information and are crucial parameters for the formation of a meaningful percept upon which to act. Although relational to the set experimental conditions and the specificities of the experimental group, these findings are in resonance with current cross-disciplinary discourse on perception, and indicate that art research can be incorporated into the wider arena of neurophysiological and behavioural research to expand its span of resources and methods.
Resumo:
Today, the use of heavy metals and chemical products industry expanded. The presence of significant amounts of, pollutants in industrial waste water can lead to serious risks to the environment and human health have heavy metals like chromium is one example of the future of salmon knock pond environment. Chromium is an essential element in the diet, but high doses of this element is very dangerous. Hence the use of chemical methods as a tool for the removal of metals from waste water pond be used. The aim of this study was to investigate the mineral kaolin adsorbents for the removal of chromium is water. Thus, the effect of different concentrations of absorbent micro amounts of chromium absorption and variable temperature, pH and electrolytes were studied. During the investigation of spectroscopic instrument (Varian) UV-VIS are used. Comparison of the absorption mechanism of chromium adsorption by the adsorbent with nano-absorbent kaolin kaolin was investigated. According to the studies done in the same conditions of temperature, pH and shaking rate of chromium absorption by nano kaolin kaolin is much more attractive. Therefore, its use as an adsorbent abundant, cheap, accessible, efficient and effective is proposed.
Resumo:
Pure Water, is a crucial demand of creature life. Following industrial development, extra amount of toxic metals such as chromium enters the environmental cycle through the sewage, which is considered as a serious threat for organisms. One of the modern methods of filtration and removal of contaminants in water, is applying Nano-technology. According to specific property of silicate materials, in this article we try to survey increased power in composites and various absorption in several morphologies and also synthesis of Nano-metal silicates with different morphologies as absorbent of metal toxic ions. At first, we synthesize nano zink silicate with three morphologies considering context and the purpose of this survey. 1) Nano synthesis of zink silicate hollow cavity by hydrothermal method in mixed solvent system of ethanol/glycol polyethylene. 2) Zink nano wires silicate in a water-based system by controlling the amount of sodium silicate. 3) Synthesis of nano zink silicate membrane. After synthesizing, we measured the cadmium ion absorbance by synthesized nano zink silicates. Controlling PH, is the applied absorption method. Next step, we synthesized nano zink-magnesium silicate composite in two various morphologies of nanowires and membrane by different precent of zink and magnesium, in order to optimize synthesized nano metal silicate. We used zink nitrate and magnesium nitrate and also measured cadmium absorption by synthesized nano metal silicates in the same way of PH control absorption. In the 3rd step, in order to determine the impact of the type of metal in nano metal silicate, we synthesized nano magnesium silicate and compared its absorption with nano zink silicate. Furthermore, we calculated the optimal concentration in one of synthesizes. Optimal concentration is the process which has the maximum absorption. While applying two methods of absorption in the test, finally we compared the effect of absorption method on the absorption level. Below you find further steps of synthesis: 1) Using IR, RAMAN, XRD spectroscopy to check the accuracy of synthesis. 2) Checking the dispersion of nano particles in ethanol solution by light microscope. 3) Measuring and observing particles with scanning electron microscope (SEM). 4) Using atomic absorption device for measuring the cadmium concentration in water-based solutions. The nano metal silicates were synthesized successfully. All of synthesized nano absorbents have the cadmium ion absorbency. The cadmium absorption via nano absorbents depend on various factors such as kind of metal in nano silicate and percent of metal in nano metal silicate composite. Meanwhile the absorption and PH control of medium containing the absorbent and solution would affect the cadmium absorption.
Resumo:
Le lambahoany est un pagne tissé par une société textile malgache telle que la Cotona d’ Antsirabe. D’ailleurs, il enveloppe le peuple malgache depuis son existence, les hommes comme les femmes, puis les vivants comme les morts. C’est ainsi que le lambahoany occupe une importante place dans la communauté malgache, non seulement comme un panneau de transmission des messages spécifiques mais également pour son rôle au système éducatif social au même titre que les arts virtuels développés aux écoles des arts. Ensuite, il est aussi nécessaire pour sensibiliser des personnes à travers d’un sujet donné. C’est en ce sens qu’il n’est plus un simple pagne mais il s’agit d’un objet patrimonial qui permet d’identifier les malgaches. Alors, leur préservation et leur valorisation se confirme primordial. D’où, la valorisation du lambahoany et sa pérennisation pour les générations futures constituent les principaux objectifs de cette étude; ABSTRACT: The Lambahoany is woven loin cloth by Malagasy textile companies like Cotona Antsirabe. Moreover, it wraps the Malagasy people since its existence, men and women, and the living and the dead. Thus the Lambahoany occupies an important place in the Malagasy community, not only as a sign of transmission of specific messages but also for its role in social education system as well as virtual arts developed schools of the arts. Then it is also necessary to educate people through a given topic. It is in this sense that it is no longer a simple loincloth, but it is a heritage object that identifies the Malagasy. So, their preservation and enhancement confirms paramount. Hence, the enhancement of Lambahoany and its sustainability for future generations are the main objectives of this study.
Resumo:
Mode of access: Internet.
Disruptive Threads and Renegade Yarns: Domestic Textile Making in Selected Women's Writing 1811-1925
Resumo:
Thesis (Ph.D, English) -- Queen's University, 2016-08-03 13:57:45.102
Resumo:
Wearable electronic textiles are an emerging research field playing a pivotal role among several different technological areas such as sensing, communication, clothing, health monitoring, information technology, and microsystems. The possibility to realise a fully-textile platform, endowed with various sensors directly realised with textile fibres and fabric, represents a new challenge for the entire research community. Among several high-performing materials, the intrinsically conductive poly(3,4-ethylenedioxythiophene) (PEDOT), doped with poly(styrenesulfonic acid) (PSS), or PEDOT:PSS, is one of the most representative and utilised, having an excellent chemical and thermal stability, as well as reversible doping state and high conductivity. This work relies on PEDOT:PSS combined with sensible materials to design, realise, and develop textile chemical and physical sensors. In particular, chloride concentration and pH level sensors in human sweat for continuous monitoring of the wearer's hydration status and stress level are reported. Additionally, a prototype smart bandage detecting the moisture level and pH value of a bed wound to allow the remote monitoring of the healing process of severe and chronic wounds is described. Physical sensors used to monitor the pressure distribution for rehabilitation, workplace safety, or sport tracking are also presented together with a novel fully-textile device able to measure the incident X-ray dose for medical or security applications where thin, comfortable, and flexible features are essential. Finally, a proof-of-concept for an organic-inorganic textile thermoelectric generator that harvests energy directly from body heat has been proposed. Though further efforts must be dedicated to overcome issues such as durability, washability, power consumption, and large-scale production, the novel, versatile, and widely encompassing area of electronic textiles is a promising protagonist in the upcoming technological revolution.
Resumo:
In this elaborate, a textile-based Organic Electrochemical Transistor (OECT) was first developed for the determination of uric acid in wound exudate based on the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), which was then coupled to an electrochemically gated textile transistor consisting of a composite of iridium oxide particles and PEDOT:PSS for pH monitoring in wound exudate. In that way a sensor for multiparameter monitoring of wound health status was assembled, including the ability to differentiate between a wet-dry status of the smart bandage by implementing impedance measurements exploiting the OECT architecture. Afterwards, for both wound management as well as generic health status tracking applications, a glass-based calcium sensor was developed employing polymeric ion-selective membranes on a novel architecture inspired by the Wrighton OECT configuration, which was later converted to a Proof-of-Concept textile prototype for wearable applications. Lastly, in collaboration with the King Abdullah University of Science and Technology (KAUST, Thuwal, Saudi Arabia) under the supervision of Prof. Sahika Inal, different types of ion-selective thiophene-based monomers were used to develop ion-selective conductive polymers to detect sodium ion by different methods, involving standard potentiometry and OECT-based approaches. The textile OECTs for uric acid detection performances were optimized by investigating the geometry effect on the instrumental response and the properties of the different textile materials involved in their production, with a special focus on the final application that implies the operativity in flow conditions to simulate the wound environment. The same testing route was followed for the multiparameter sensor and the calcium sensor prototype, with a particular care towards the ion-selective membrane composition and electrode conditioning protocol optimization. The sodium-selective polymer electrosynthesis was optimized in non-aqueous environments and was characterized by means of potentiostatic and potentiodynamic techniques coupled with Quartz Crystal Microbalance and spectrophotometric measurements.
Resumo:
In the past few decades, the textile industry has significantly increased investment in research to develop functional fabrics, with a special focus on those aggregating values. Such fabrics can exploit microparticles inferior to 100 μm, such as those made by complex coacervation in their creation. The antimicrobial properties of chitosan can be attributed to these microparticles. Developing particles with uniform structure and properties would facilitate the control for the eventual release of the core material. Thus, a complex coacervation between gelatin and chitosan was studied, and the optimal conditions were replicated in the encapsulation of limonene. Spherical particles formed had an average diameter (D3,2) of 30 μm and were prepared with 89.7% efficiency. Cross-linking of these microparticles using glutaraldehyde and tripolyphosphate was carried out before spray drying. After drying, microparticles cross-linked with glutaraldehyde were oxidized and clustered and those that were cross-linked with tripolyphosphate resisted drying and presented a high yield.
Resumo:
The adsorption capacity of alpha-chitosan and its modified form with succinic anhydride was compared with the traditional adsorbent active carbon by using the dye methylene blue, employed in the textile industry. The isotherms for both biopolymers were classified as SSA systems in the Giles model, more specifically in L class and subgroup 3. The dye concentration in the supernatant in the adsorption assay was determined through electronic spectroscopy. By calorimetric titration thermodynamic data of the interaction between methyene blue and the chemically modified chitosan at the solid/liquid interface were obtained. The enthalpy of the dye/chitosan interaction gave 2.47 ± 0.02 kJ mol-1 with an equilibrium constant of 7350 ± 10 and for the carbon/dye interaction this constant gave 5951 ± 8. The spontaneity of these adsorptions are reflected by the free Gibbs energies of -22.1 ± 0.4 and -21.5 ± 0.2 kJ mol-1, respectively, found for these systems. This new adsorbent derived from a natural polysaccharide is as efficient as activated carbon. However 97% of the bonded dye can be eluted by sodium chloride solution, while this same operation elutes only 42% from carbon. Chitosan is efficient in dye removal with the additional advantage of being cheap, non-toxic, biocompatible and biodegradable.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física