994 resultados para Tantalum
Resumo:
Oceanic zircon trace element and Hf-isotope geochemistry offers a means to assess the magmatic evolution of a dying spreading ridge and provides an independent evaluation of the reliability of oceanic zircon as an indicator of mantle melting conditions. The Macquarie Island ophiolite in the Southern Ocean provides a unique testing ground for this approach due to its formation within a mid-ocean ridge that gradually changed into a transform plate boundary. Detrital zircon recovered from the island records this change through a progressive enrichment in incompatible trace elements. Oligocene age (33-27 Ma) paleo-detrital zircon in ophiolitic sandstones and breccias interbedded with pillow basalt have trace element compositions akin to a MORB crustal source, whereas Late Miocene age (8.5 Ma) modern-detrital zircon collected from gabbroic colluvium on the island have highly enriched compositions unlike typical oceanic zircon. This compositional disparity between age populations is not complimented by analytically equivalent eHf data that primarily ranges from 14 to 13 for sandstone and modern-detrital populations. A wider compositional range for the sandstone population reflects a multiple pluton source provenance and is augmented by a single cobble clast with eHf equivalent to the maximum observed composition in the sandstone (~17). Similar sandstone and colluvium Hf-isotope signatures indicate inheritance from a similar mantle reservoir that was enriched from the depleted MORB mantle average. The continuity in Hf-isotope signature relative to trace element enrichment in Macquarie Island zircon populations, suggests the latter formed by reduced partial melting linked to spreading-segment shortening and transform lengthening along the dying spreading ridge.
Resumo:
Original geological, geophysical, lithological, mineralogical data on uplifts of the Central Atlantic are given in the book based on materials of Cruise 1 of the R/V Akademik Nikolaj Strakhov. Geological and geophysical studies include description of the obtained material and analysis of structural and morphological elements of the ocean floor. Results of lithological, petrochemical and geochemical studies were extremely innovative and develop a conceptual model. The latter include studies of petrochemical evolution of tholeiitic alkaline plate volcanism, large-scale hydrothermal transformation of basement rocks - palygorskitization, phosphatization and ferromanganese mineralization. Showing imposition Superposition of hydrogenic alteration on hydrothermally altered rocks and its role in Cenozoic history of sedimentation is shown.
Resumo:
The composition of gabbroic rocks from the drill core of Hole 735B (ODP Leg 176) at the 11 Ma Atlantis II bank close to the slow spreading Southwest Indian Ridge (SWIR) has been analyzed for major and trace elements and Sr, Nd and Pb isotopic composition. The samples are thought to represent much of the mineralogical and geochemical variation in a vertical 1-km section (500-1500 m below the sea floor) of the lower ocean crust. Primitive troctolitic gabbros, olivine gabbros and gabbros that have Mg#=84-70, Ca#>61 and low Na# (Na/(Na+Al)) (8-17) are intruded by patches or veins of more evolved FeTi-oxide rich gabbroic and dioritic rocks with Mg# to 20, Ca# to 32, Na#=14-23, TiO2<7 wt.% and FeOtotal<18 wt.%. All rocks are acdcumulates, and incompatible element concentrations are low, e.g. Pb=0.1-0.7 ppm and U=0.005 ppm in the primitive rocks and up to 2 ppm Pb and 0.2 ppm U in the evolved. The range of isotopic compositions of the unleached rocks is: 87Sr/86Sr=0.70280-0.70299, average 0.70287+/-0.00005 (1 S.D., N=30 samples) (except one felsic vein with 87Sr/86Sr=0.7045), 143Nd/144Nd=0.51304-0.51314, average 0.51310+/-0.00002 (1 S.D., N=28), 206Pb/204Pb=17.43-18.55, 207Pb/204Pb=15.40-15.61 and 208Pb/204Pb=37.19-38.28. The range of Sr and the almost constant Nd isotopic composition resemble that found in the upper 500 m of Hole 735B, while Pb ranges to more radiogenic compositions. In general, there is a decrease in isotopic variation of Sr and Pb as well as ? (238U/204Pb), U and Pb with depth, with a trend towards relatively unradiogenic compositions. This correlates with a decrease in alteration and frequency of evolved rock-types in the core. Leached samples generally have less radiogenic Pb with values trending towards 206Pb/204Pb=17.35, 207Pb/204Pb=15.35 and 208Pb/204Pb=37.0, while their 87Sr/86Sr ratios deviate less systematically from unleached rocks and reach both higher, 0.70307, and lower values, 0.70276. Separated clinopyroxene has elevated 87Sr/86Sr up to 0.7035, while plagioclase generally has close to whole rock Sr. Leaching reduced 87Sr/86Sr in clinopyroxene and in two (out of nine) cases leached separates and whole rock display isotopic equilibrium. Relatively minor hydrothermal seawater alteration is thought to have increased 87Sr/86Sr in the rocks, while a secondary high temperature percolation of a mantle-derived agent is thought to be the cause for the trend towards radiogenic Pb. This material had intermediate 87Sr/86Sr and may have originated from non-MORB off axis mantle. The main primary igneous isotopic variation of the gabbros is suggested to have been derived from the MORB-mantle and is defined mainly by leached samples from both ODP Leg 176 and Leg 118 and can be explained by two-component mixing of an end-member with composition like Central Indian Ridge basalts and an end-member with composition unlike any MORB. The latter is characterized by very unradiogenic Pb, in particular 207Pb/204Pb, and may have an origin with affinity to old depleted mantle (DM). The isotopic composition of the magmas parental to the FeTi-oxide rich rocks cannot be distinguished from the magmas parental to the primitive gabbros and an intimate relationship is indicated. The small-scale inhomogeneity indicated for the SWIR MORB-mantle at the Atlantis II Fracture Zone was probably inherited by the lower crustal rocks due to small-scale melting and monogenetic magma chambers at this slow spreading ridge.
Resumo:
New Pb, Sr, and Nd isotope data are presented for 64 samples from the six backarc sites drilled during Leg 135. Systematic changes in Pb and Sr compositions illustrate significant isotopic variations between and within sites as well as provide two key pieces of information. First, a recent influx of asthenosphere with Indian Ocean mantle affinities has occurred and has successfully displaced older "Pacific" asthenosphere from the mantle underlying the backarc region. Second, clear evidence exists for mixing between these two asthenospheric end-members and at least one "arc-like" component. The latter was not the same as most material currently erupting in the Tofua Arc, but it must have had a more radiogenic Pb-isotope signature, perhaps similar to rocks analyzed from the islands of Tafahi, and Niuatoputapu. A comparison between the isotopic variations and the tectonic setting of the drill sites reveals consistent and important information regarding the mantle dynamics beneath the evolving backarc basin. We propose a model in which the source of upwelling magmas changes from Pacific to Indian Ocean asthenosphere with the propagation of seafloor spreading, a model with important implications for the rate of mantle influx into this region. Although the chemistries of backarc magmas have been profoundly influenced by this process, an additional consequence is the advection of Indian Ocean asthenosphere into the sub-arc mantle source. The isotopic compositions of arc rocks from the vicinity have been reevaluated on the basis of the proposed mantle advection model. We suggest that the slab-derived flux of trace elements into the arc wedge has remained relatively uniform with time (i.e., ~40 Ma), so that the change in arc chemistry results from mantle source substitution, rather than from differences in the composition of the downgoing plate.
Resumo:
Oceanic sediments contain the products of erosion of continental crust, biologic activity and chemical precipitation. These processes create a large diversity of their chemical and isotopic compositions. Here we focus on the influence of the distance from a continental platform on the trace element and isotopic compositions of sediments deposited on the ocean floor and highlight the role of zircons in decoupling high-field strength elements and Hf isotopic compositions from other trace elements and Nd isotopic compositions. We report major and trace element concentrations as well as Sr and Hf isotopic data for 80 sediments from the Lesser Antilles forearc region. The trace-element characteristics and the Sr and Hf isotopic compositions are generally dominated by detrital material from the continental crust but are also variably influenced by chemical or biogenic carbonate and pure biogenic silica. Next to the South American continent, at DSDP Site 144 and on Barbados Island, sediments, coarse quartz arenites, exhibit marked Zr and Hf excesses that we attribute to the presence of zircon. In contrast, the sediments from DSDP Site 543, which were deposited farther away from the continental platform, consist of fine clay and they show strong deficiencies in Zr and Hf. The enrichment or depletion of Zr-Hf is coupled to large changes in Hf isotopic compositions (-30 < epsilon-Hf < +4) that vary independently from the Nd isotopes. We interpret this feature as a clear expression of the "zircon effect" suggested by Patchett and coauthors in 1984. Zircon-rich sediments deposited next to the South American continent have very low epsilon-Hf values inherited from old zircons. In contrast, in detrital clay-rich sediments deposited a few hundred kilometers farther north, the mineral fraction is devoid of zircon and they have drastically higher epsilon-Hf values inherited from finer, clay-rich continental material. In the two DSDP sites, average Hf isotopes are very unradiogenic relative to other oceanic sediments worldwide (epsilon-Hf = -14.4 and -7.4) and they define the low Hf end member of the sedimentary field in Hf-Nd space. Their compositions correspond to end members that, when mixed with mantle, are able to reproduce the pattern of volcanic rocks from the Lesser Antilles. More generally, we find a relationship between Nb/Zr ratios and the vertical deviation of Hf isotope ratios from the Nd-Hf terrestrial array and we suggest that this relationship can be used as a tool to distinguish sediment input from fractionation during melting during the formation of arc lavas.
Resumo:
According to geochemical analyses carbonaceous sediments from deep basins of the Baltic Sea containing 3-5% of organic carbon are enriched in some metals such as Cu, Mo, Ni, Pb, Zn, V, and U relative to shallow-water facies of the Bay of Finland. These metals also enrich (relative to background values in clayey rocks) ancient carbonaceous shales, where the average Cu and V contents are slightly higher and that of Mo, Pb, and Zn lower than in deep-sea carbonaceous sediments of the Baltic Sea. In addition, the deep-sea carbonaceous sediments of the Baltic Sea are enriched (but less notably than ancient shales) in Ag, As, Bi, and Cd. These data confirm previous assumptions that carbonaceous sediments accumulating now in seas and oceans can be considered as recent analogs of ancient metalliferous shales.
Resumo:
Four petrographic lava types occur, ranging from aphyric to moderately phyric clinopyroxene-olivine tholeiitic basalts (Unit 1); olivine-clinopyroxene picritic basalts, sparsely to strongly olivine-phyric (Unit 3-type); olivine-clinopyroxene basalts (clinopyroxene dominant) (Unit 4); and moderately to strongly phyric two-pyroxene-plagioclase basaltic andesites (Unit 9-type). The olivine phyric lavas contain forsteritic olivines (extending to Fo92), and very magnesian Cr-rich spinels similar to those occurring in boninitic lavas. The basaltic andesites are mineralogically and petrographically indistinguishable from the modern Tofua Arc basaltic andesites, one notable feature being the highly calcic cores in plagioclase phenocrysts (up to An95). The forsteritic olivines, the Cr-spinels, and the calcic plagioclases are unlikely to have been precipitated in the lava compositions in which they occur, and are thought to have been incorporated from highly primitive melts by way of mixing processes (as advocated by Allan, this volume). Notwithstanding the evidence for mixing, the major element chemistries of the Unit 1- and Unit 9-type lavas are shown to be consistent with the derivation of the Unit 9-type basaltic andesites by means of fractional crystallization, through magmas of similar chemistry to Unit 1. Some trace element discrepancies in the modeling, and the relative volcanic stratigraphy of Site 839, however, preclude a direct liquid line of descent between the actual recovered units. Trace element data as well as TiO2 and Na2O data clearly illustrate the arc-like affinities of the magmas, with strong highfield-strength element depletion and large-ion-lithophile element enrichment. The abundance patterns are very close to those of the Tofua and Kermadec arc magmas, and also Valu Fa. Pb-, Sr-, and Nd-isotopic compositions indicate closest affinities with a "Pacific" MORB source, apparently characteristic of the western, older part of the Lau Basin. A subduction-related isotopic contribution is, however, inferred. The sources of the Site 839 magmas are thus inferred to be similar to, but less depleted geochemically, than those of the modern Tofua Arc magmas. The Site 839 sequence is interpreted as an older remnant of a volcanic construct of the "proto-Tofua arc", originally developed adjacent to the Tonga Ridge. Opening of the eastern Lau Basin, because of southward migrating propagators, has split and isolated the sequence, leaving it stranded within the modern Lau Basin.
Resumo:
Physical properties of basalts from Ocean Drilling Program Sites 800 and 801 in the Pigafetta Basin and Site 802 in the East Mariana Basin, including porosity, wet-bulk density, grain density, compressional wave velocity, and thermal conductivity, were measured aboard JOIDES Resolution during Leg 129. The ranges for the properties are large, as typified by the velocity, which varies from 3.46 to 6.59 km/s. Extensively altered basalts immediately above and below a silicified hydrothermal deposit (60-69 m sub-basement depth) at Site 801 display the highest porosity, and lowest bulk density, velocity, and thermal conductivity, whereas the slightly altered rocks from Site 802 and the lowermost part of Site 801 represent the other extreme in physical properties variations. In order to better establish the relationship between physical properties and alteration of the rocks, the compressional wave velocities were compared with results from major and trace elemental analyses and petrographic examination of select samples. For the Leg 129 basalts, velocity displays a generally consistent decrease with increasing K2O, H2O+, loss on ignition, and Rb contents and the value of Fe3+/FeT and decreasing concentrations of SiO2, FeOT, CaO, MgO, and MnO. These trends are consistent with trends documented for the progressive alteration of oceanic crust and indicate that on a laboratory sample scale, basalt alteration is largely responsible for the variation of the physical properties of basalts sampled at Sites 800, 801, and 802.
Resumo:
Abyssal peridotite from the 15°20'N area of the Mid-Atlantic Ridge show complex geochemical variations among the different sites drilled during ODP Leg 209. Major element compositions indicate variable degrees of melt depletion and refertilization as well as local hydrothermal metasomatism. Strongest evidence for melt-rock interactions are correlated Light Rare Earth Element (LREE) and High Field Strength Element (HFSE) additions at Sites 1270 and 1271. In contrast, hydrothermal alteration at Sites 1274, 1272, and 1268 causes LREE mobility associated with minor HFSE variability, reflecting the low solubility of HFSE in aqueous solutions. Site 1274 contains the least-altered, highly refractory, peridotite with strong depletion in LREE and shows a gradual increase in the intensity of isochemical serpentinization; except for the addition of H2O which causes a mass gain of up to 20 g/100 g. The formation of magnetite is reflected in decreasing Fe(2+)/Fe(3+) ratios. This style of alteration is referred to as rock-dominated serpentinization. In contrast, fluid-dominated serpentinization at Site 1268 is characterized by gains in sulfur and development of U-shaped REE pattern with strong positive Eu anomalies which are also characteristic for hot (350 to 400°C) vent-type fluids discharging from black smoker fields. Serpentinites at Site 1268 were overprinted by talc alteration under static conditions due to interaction with high a_SiO2 fluids causing the development of smooth, LREE enriched patterns with pronounced negative Eu anomalies. These results show that hydrothermal fluid-peridotite and fluid-serpentinite interaction processes are an important factor regarding the budget of exchange processes between the lithosphere and the hydrosphere in slow spreading environments.