833 resultados para TUBERCULOSIS
Resumo:
Bovine tuberculosis (TB)is an important economic disease. Badgers (Meles meles) are the wildlife source implicated in many cattle outbreaks of TB in Britain, and extensive badger control is a controversial option to reduce the disease. A badger and cattle population model was developed, simulating TB epidemiology; badger ecology, including postcull social perturbation; and TB-related farm management. An economic cost-benefit module was integrated into the model to assess whether badger control offers economic benefits. Model results strongly indicate that although, if perturbation were restricted, extensive badger culling could reduce rates in cattle, overall an economic loss would be more likely than a benefit. Perturbation of the badger population was a key factor determining success or failure of control. The model highlighted some important knowledge gaps regarding both the spatial and temporal characteristics of perturbation that warrant further research.
Resumo:
A tuberculose (TB) é uma doença infecto-contagiosa causada pelo bacilo Mycobacterium tuberculosis e que permanece como um importante problema de saúde pública mundial, sendo a TB pulmonar a forma mais comum de apresentação da doença. O diagnóstico precoce e tratamento adequado são essenciais para a eficácia dos programas públicos de controle da TB. Novos metodologias mais rápidas, sensíveis e específicas, como a reação em cadeia da polimerase (PCR), vem sendo propostas no diagnóstico da doença. O objetivo desse estudo foi avaliar o desempenho de duas PCR, a PCR em tempo real (qPCR) e a Nested PCR em único tubo (STNPCR), em diferentes amostras biológicas, no diagnóstico da tuberculose pulmonar, além de compará-las com as metodologias convencionais (baciloscopia e cultura) e entre si. Para isso foram analisados 125 pacientes que tiveram amostras de sangue (125 amostras de plasma e 116 amostras de PBMC), urina (n=125) e escarro (n=125) coletadas, totalizando a análise de 491 amostras biológicas. Amostras de escarro e urina foram descontaminadas pelo método de Petroff NAOH 4 por cento modificado e semeadas em meio de cultura Lõwenstein-Jensen (LJ), enquanto as amostras de sangue eram separadas em plasma e PBMC. Após processamento, deu-se a extração de DNA através do kit comercial da Qiagen seguida de amplificação pelas duas metodologias de PCR. Para análise estatística calculou-se a sensibilidade, especificidade, valores preditivos positivo e negativo e índice kappa das técnicas. A STNPCR apresentou, em amostras de sangue, sensibilidade de 26,3 por cento e especificidade de 97,7 por cento. Em amostras de urina observou-se uma S = 7,9 por cento e E = 98,9 por cento e em escarro S = 21,1 por cento e E = 98,9 por cento. Quando analisadas as asmotras em paralelo, a sensibilidade da STNPCR foi igual a 44,7 por cento enquanto sua especificidade foi 97,7 por cento. Já a qPCR, em amostras de sangue, obteve sensibilidade igual a 26,3 por cento e especificidade de 95,4 por cento. Em amostras de urina a sensibilidade obtida foi 47,4 por cento e a especificidade 79,3 por cento e, em escarro, S = 36,8 por cento e E = 95,4 por cento. Quando analisada em paralelo, a sensibilidade da qPCR foi 65,8 por cento e a especificidade foi 79,3 por cento. A baciloscopia de escarro apresentou sensibilidade de 41,7 por cento e especificidade de 100 por cento, enquanto as culturas em urina e escarro apresentaram sensibilidade e especificidade, respectivamente, de 10,5 por cento e 100 por cento e 60,5 por cento e 96,6 por cento. Pode-se concluir que a qPCR apresentou melhor desempenho quando comparada à STNPCR e também bom desempenho quando comparada às metodologias convencionais, e que quando analisa-se mais de um tipo de amostras biológica, a eficácia das técnicas é aumentada. Espera-se que com a utilização dessa técnica molecular, seja possível a melhor elucidação dos casos de TB pulmonar, promovendo maior taxa de tratamento dos pacientes e menor risco de transmissão da doença
Resumo:
We use contingent valuation (CV) and choice experiment (CE) methods to assess cattle farmers’ attitudes to and willingness to pay (WTP) for a bovine tuberculosis (bTB) cattle vaccine, to help inform vaccine development and policy. A survey questionnaire was administered by means of telephone interviews to a stratified sample of 300 cattle farmers in annually bTB-tested areas in England and Wales. Farmers felt that bTB was a major risk for the cattle industry and that there was a high risk of their cattle getting the disease. The CE estimate produced a mean WTP of £35 per animal per single dose for a vaccine that is 90% effective at reducing the risk of a bTB breakdown and an estimated £55 for such a vaccine backed by 100% insurance of loss if a breakdown should occur. The CV estimate produced a mean WTP of nearly £17 per dose/per animal/per year for a vaccine (including 100% insurance) which, given the average lifespan of cattle, is comparable to the CE estimate. These WTP estimates are substantially higher than the expected cost of a vaccine which suggests that farmers in high risk bTB ‘hotspot’ areas perceive a substantial net benefit from buying the vaccine.
Resumo:
Iron is an essential cofactor for both mycobacterial growth during infection and for a successful protective immune response by the host. The immune response partly depends on the regulation of iron by the host, including the tight control of expression of the iron-storage protein, ferritin. BCG vaccination can protect against disease following Mycobacterium tuberculosis infection, but the mechanisms of protection remain unclear. To further explore these mechanisms, splenocytes from BCG-vaccinated guinea pigs were stimulated ex vivo with purified protein derivative from M. tuberculosis and a significant down-regulation of ferritin light- and heavy-chain was measured by reverse-transcription quantitative-PCR (P ≤0.05 and ≤0.01, respectively). The mechanisms of this down-regulation were shown to involve TNFα and nitric oxide. A more in depth analysis of the mRNA expression profiles, including genes involved in iron metabolism, was performed using a guinea pig specific immunological microarray following ex vivo infection with M. tuberculosis of splenocytes from BCG-vaccinated and naïve guinea pigs. M. tuberculosis infection induced a pro-inflammatory response in splenocytes from both groups, resulting in down-regulation of ferritin (P ≤0.05). In addition, lactoferrin (P ≤0.002), transferrin receptor (P ≤0.05) and solute carrier family 11A1 (P ≤0.05), were only significantly down-regulated after infection of the splenocytes from BCG-vaccinated animals. The results show that expression of iron-metabolism genes is tightly regulated as part of the host response to M. tuberculosis infection and that BCG-vaccination enhances the ability of the host to mount an iron-restriction response which may in turn help to combat invasion by mycobacteria.
Resumo:
A brief history of bovine tuberculosis (bTB) and its control in Great Britain is presented. Numerous diverse policies to control the disease in man, cattle and wildlife have been pursued over the last 100 years and many millions of pounds have been spent. After notable success in reducing the incidence and prevalence of bTB in cattle in GB from the 1950s to the mid-1980s, the number of cattle slaughtered has increased with increased geographical spread continually since that time with a high point of bTB incidence in 2008. This increase appeared to coincide with changing policy regarding the control of the disease in badgers with a more humane approach adopted and with strengthened protection for badgers through legislation. Indeed, much controversy has been involved in the debate on the role of badgers in disease transmission to cattle and the need for their control as vectors of the disease with various commissioned research projects, trials, public consultations and media attention. The findings of two social science investigations presented as examples showed that citizens generally believed that bTB in cattle is an important issue that needs to be tackled but objected to badgers being killed, whilst cattle farmers were willing to pay around £17/animal/year for a bTB cattle vaccine. It is noted that successes regarding the control of bTB in other countries have combined both cattle and wildlife controls and had strong involvement from industry working with government.
Resumo:
BACKGROUND: Mycobacterium tuberculosis genotypes resistant to reactive nitrogen intermediates (RNI) predominate in certain urban communities, suggesting that this phenotype influences disease transmission. OBJECTIVE: To compare different M. tuberculosis genotypes for resistance to RNI generated in vitro. DESIGN: We genotyped 420 M. tuberculosis isolates from a neighborhood in Sao Paulo, Brazil, and analyzed them for susceptibility to RNI generated in acidified sodium nitrite (ASN) solution. RESULTS: Seventy-one (43%) of 167 recent-infection strains and 68 (43%) of 158 endogenous infection strains showed moderate- to high-level ASN resistance. CONCLUSION: ASN resistance of M. tuberculosis is not necessarily a determining factor for enhanced transmission.
Resumo:
Drug resistance and virulence of Mycobacterium tuberculosis are partially related to the pathogen`s antioxidant systems. Peroxide detoxification in this bacterium is achieved by the heme-containing catalase peroxidase and different two-cysteine peroxiredoxins. M. tuberculosis genome also codifies for a putative one-cysteine peroxiredoxin, alkyl hydroperoxide reductase E (MtAhpE). Its expression was previously demonstrated at a transcriptional level, and the crystallographic structure of the recombinant protein was resolved under reduced and oxidized states. Herein, we report that the conformation of MtAhpE changed depending on its single cysteine redox state, as reflected by different tryptophan fluorescence properties and changes in quaternary structure. Dynamics of fluorescence changes, complemented by competition kinetic assays, were used to perform protein functional studies. MtAhE reduced peroxynitrite 2 orders of magnitude faster than hydrogen peroxide (1.9 x 10(7) M(-1) s(-1) vs 8.2 x 10(4) M(-1) s(-1) at pH 7.4 and 25 degrees C, respectively). The latter also caused cysteine overoxidation to sulfinic acid, but at much slower rate constant (40 M(-1) s(-1)). The pK(a) of the thiol in the reduced enzyme was 5.2, more than one unit lower than that of the sulfenic acid in the oxidized enzyme. The pH profile of hydrogen peroxide-mediated thiol and sulfenic acid oxidations indicated thiolate and sulfenate as the reacting species. The formation of sulfenic acid as well as the catalytic peroxidase activity of MtAhpE was demonstrated using the artificial reducing substrate thionitrobenzoate. Taken together, our results indicate that MtAhpE is a relevant component in the antioxidant repertoire of M. tuberculosis probably involved in peroxide and specially peroxynitrite detoxification.
Resumo:
The aim of this study was to research Candida dubliniensis among isolates present in a Brazilian yeast collection and to evaluate the main phenotypic methods for discrimination between C. albicans and C. dubliniensis from oral cavity. A total of 200 isolates, presumptively identified as C. albicans or C. dubliniensis obtained from heart transplant patients under immunosuppressive therapy, tuberculosis patients under antibiotic therapy, HIV-positive patients under antiretroviral therapy, and healthy subjects, were analyzed using the following phenotypic tests: formation and structural arrangement of chlamydospores on corn meal agar, casein agar, tobacco agar, and sunflower seed agar; growth at 45 degrees C; and germ tube formation. All strains were analyzed by polymerase chain reaction (PCR). In a preliminary screen for C. dubliniensis, 48 of the 200 isolates on corn meal agar, 30 of the 200 on casein agar, 16 of the 200 on tobacco agar, and 15 of the 200 on sunflower seed agar produced chlamydoconidia; 27 of the 200 isolates showed no or poor growth at 45 degrees C. All isolates were positive for germ tube formation. These isolates were considered suggestive of C. dubliniensis. All of them were subjected to PCR analysis using C. dubliniensis-specific primers. C. dubliniensis isolates were not found. C. dubliniensis isolates were not recovered in this study done with immunocompromised patients. Sunflower seed agar was the medium with the smallest number of isolates of C. albicans suggestive of C. dubliniensis. None of the phenotypic methods was 100% effective for discrimination between C. albicans and C. dubliniensis. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The development of more efficient anti-tuberculosis drugs is of interest. Three oxovanadium(IV) and three cis-dioxovanadium(V) complexes with thiosemicarbazone derivatives bearing moieties with different lipophilicity have been prepared and had their inhibitory activity against Mycobacterium tuberculosis H(37)Rv ATCC 27294 evaluated. The analytical methods used by the complexes` characterization included IR, EPR, (1)H, (13)C and (51)V NMR spectroscopies, elemental analysis, cyclic voltammetry, magnetic susceptibility measurement and single crystal X-ray diffractometry. [VO(acac)(aptsc)], [VO(acac)(apmtsc)] and [VO(acac)(apptsc)] (acac = acetylacetonate; Haptsc = 2-acetylpyridinethiosemicarbazone; Hapmtsc = 2-acetylpyridine-N(4)-methyl-thiosemicarbazone and Happtsc = 2-acetylpyridine-N(4)-phenyl-thiosemicarbazone) are paramagnetic and their EPR spectra are consistent with the monoanionic N,N,S-tridentate coordination of the thiosemicarbazone ligands, resulting in octahedral structures of rhombic symmetry and with the oxidation state +IV for the vanadium atom. As result of oxidation of the vanadium(IV) complexes above, the diamagnetic cis-dioxovanadium(V) complexes [VO(2)(aptsc)[, [VO(2)(apmtsc)[ and [VO(2)(apptsc)] are formed. Their (1)H, (13)C and (51)V NMR spectra were acquired and support a distorted square pyramidal geometry for them, in accord with the solid state X-ray structures determined for [VO(2)(aptsc)] and [VO(2)(apmtsc)]. In general, the vanadium compounds show comparable or larger anti-M. tuberculosis activities than the free thiosemicarbazone ligands, with MIC values within 62.5-1.56 (mu g/mL). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Tuberculosis (TB) is a major cause of morbidity and mortality throughout the world, and it is estimated that one-third of the world`s population is infected with Mycobacterium tuberculosis. Among a series of tested compounds, we have recently identified five synthetic chalcones which inhibit the activity of M. tuberculosis protein tyrosine phosphatase A (PtpA), an enzyme associated with M. tuberculosis infectivity. Kinetic studies demonstrated that these compounds are reversible competitive inhibitors. In this work we also carried out the analysis of the molecular recognition of these inhibitors on their macromolecular target, PtpA, through molecular modeling. We observed that the predominant determinants responsible for the inhibitory activity of the chalcones are the positions of the two methoxyl groups at the A-ring, that establish hydrogen bonds with the amino acid residues Arg17, His49, and Thr12 in the active site of PtpA, and the substitution of the phenyl ring for a 2-naphthyl group as B-ring, that undergoes p stacking hydrophobic interaction with the Trp48 residue from PtpA. Interestingly, reduction of mycobacterial survival in human macrophages upon inhibitor treatment suggests their potential use as novel therapeutics. The biological activity, synthetic versatility, and low cost are clear advantages of this new class of potential tuberculostatic agents. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Tuberculosis (TB) is one of the most common infectious diseases known to man and responsible for millions of human deaths in the world. The increasing incidence of TB in developing countries, the proliferation of multidrug resistant strains, and the absence of resources for treatment have highlighted the need of developing new drugs against TB. The shikimate pathway leads to the biosynthesis of chorismate, a precursor of aromatic amino acids. This pathway is absent from mammals and shown to be essential for the survival of Mycobacterium tuberculosis, the causative agent of TB. Accordingly, enzymes of aromatic amino acid biosynthesis pathway represent promising targets for structure-based drug design. The first reaction in phenylalanine biosynthesis involves the conversion of chorismate to prephenate, catalyzed by chorismate mutase. The second reaction is catalyzed by prephenate dehydratase (PDT) and involves decarboxylation and dehydratation of prephenate to form phenylpyruvate, the precursor of phenylalanine. Here, we describe utilization of different techniques to infer the structure of M. tuberculosis PDT (MtbPDT) in solution. Small angle X-ray scattering and ultracentrifugation analysis showed that the protein oligomeric state is a tetramer and MtbPDT is a flat disk protein. Bioinformatics tools were used to infer the structure of MtbPDT A molecular model for MtbPDT is presented and molecular dynamics simulations indicate that MtbPDT i.s stable. Experimental and molecular modeling results were in agreement and provide evidence for a tetrameric state of MtbPDT in solution.
Resumo:
The aim of this study was to identify a candidate drug for the development of anti-tuberculosis therapy from previously synthesized compounds based on the thiosemicarbazones, semicarbazones, dithio-carbazates and hydrazide/hydrazones compounds. The minimal inhibitory concentration (MIC) of these compounds against Mycobacterium tuberculosis was determined. Their in vitro cytotoxicity to J774 cells (IC(50)) was determined to establish a selectivity index (SI) (SI = IC(50)/MIC). The best compounds were the thiosemicarbazones (2, 3 and 4) and the hydrazide/hydrazones (14, 15, 16 and 18). The results are comparable to or better than those of ""first line"" or ""second line"" drugs commonly used to treat TB, suggesting these compounds as anti-TB drug candidates. (C) 2010 Elsevier Masson SAS. All rights reserved.