963 resultados para TRANSFER EXCITED-STATES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is known that the exact density functional must give ground-state energies that are piecewise linear as a function of electron number. In this work we prove that this is also true for the lowest-energy excited states of different spin or spatial symmetry. This has three important consequences for chemical applications: the ground state of a molecule must correspond to the state with the maximum highest-occupied-molecular-orbital energy, minimum lowest-unoccupied-molecular-orbital energy, and maximum chemical hardness. The beryllium, carbon, and vanadium atoms, as well as the CH(2) and C(3)H(3) molecules are considered as illustrative examples. Our result also directly and rigorously connects the ionization potential and electron affinity to the stability of spin states.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Localized molecular orbitals (LMOs) are much more compact representations of electronic degrees of freedom than canonical molecular orbitals (CMOs). The most compact representation is provided by nonorthogonal localized molecular orbitals (NOLMOs), which are linearly independent but are not orthogonal. Both LMOs and NOLMOs are thus useful for linear-scaling calculations of electronic structures for large systems. Recently, NOLMOs have been successfully applied to linear-scaling calculations with density functional theory (DFT) and to reformulating time-dependent density functional theory (TDDFT) for calculations of excited states and spectroscopy. However, a challenge remains as NOLMO construction from CMOs is still inefficient for large systems. In this work, we develop an efficient method to accelerate the NOLMO construction by using predefined centroids of the NOLMO and thereby removing the nonlinear equality constraints in the original method ( J. Chem. Phys. 2004 , 120 , 9458 and J. Chem. Phys. 2000 , 112 , 4 ). Thus, NOLMO construction becomes an unconstrained optimization. Its efficiency is demonstrated for the selected saturated and conjugated molecules. Our method for fast NOLMO construction should lead to efficient DFT and NOLMO-TDDFT applications to large systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[Ru(BPY)2POQ-Nmet]2+ and [Ru(TAP)2POQ-Nmet]2+ (1 and 3) are bifunctional complexes composed of a metallic unit linked by a flexible chain to an organic unit. They have been prepared as photoprobes or photoreagents of DNA. In this work, the spectroscopic properties of these bifunctional complexes in the absence of DNA are compared with those of the monofunctional analogues [Ru(BPY)2Phen]2+, [Ru-(BPY)2acPhen]2+, [Ru(TAP)2Phen]2+, and [Ru(TAP)2acPhen]2+ (2 and 4). The electrospray mass spectrometry and absorption data show that the quinoline moiety exists in the protonated and nonprotonated form. Although the bifunctional complex containing 2,2′-bipyridine (BPY) ligands exhibits photophysical properties similar to those of the monofunctional compounds, the bifunctional complex with 1,4,5,8-tetraazaphenanthrene (TAP) ligands behaves quite differently. It has weaker relative emission quantum yields and shorter luminescence lifetimes than the monofunctional TAP analogue when the quinoline unit is nonprotonated. This indicates an efficient intramolecular quenching of the 3MLCT (metal to ligand charge transfer) excited state of the TAP metallic moiety. When the organic unit is protonated, there is no internal quenching. In organic solvent, the nonquenched excited metallic unit (bearing a protonated quinoline) and the quenched one (bearing a nonprotonated organic unit) are in slow equilibrium as compared to the lifetime of the two emitters. In aqueous solution this equilibrium is faster and is catalysed by the presence of phosphate buffer. Flash photolysis experiments suggest that the intramolecular quenching process originates from a photoinduced electron transfer from the nonprotonated quinoline to the excited Ru(TAP)2 2+ moiety.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Distorted-wave Born approximation calculations for Ps formation in positron impact on He, Ne, Ar, Kr and Xe are reported for the energy range up to 200 eV. Capture into the n = 1, 2 and 3 states of Ps is calculated explicitly and 1/n(3) scaling is used to estimate capture into states with n > 3. The calculations for the heavier noble gases allow for capture not only from the outer np(6) shell of the atom but also from the first inner ns(2) shell. However, the inner shell capture is found to be very small. Although by no means unambiguous, the calculations provide some support to the conjecture of Larrichia et al. [J. Phys. B 35 (2002) 2525] that the double peak and shoulder structures observed experimentally for Ps formation in Ar, Kr and Xe arise from formation in excited states. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The spectroscopy and metastability of the carbon dioxide doubly charged ion, the CO22+ dication, have been studied with photoionization experiments: time-of-flight photoelectron photoelectron coincidence (TOF-PEPECO), threshold photoelectrons coincidence (TPEsCO), and threshold photoelectrons and ion coincidence (TPEsCO ion coincidence) spectroscopies. Vibrational structure is observed in TOF-PEPECO and TPEsCO spectra of the ground and first two excited states. The vibrational structure is dominated by the symmetric stretch except in the TPEsCO spectrum of the ground state where an antisymmetric stretch progression is observed. All three vibrational frequencies are deduced for the ground state and symmetric stretch and bending frequencies are deduced for the first two excited states. Some vibrational structure of higher electronic states is also observed. The threshold for double ionization of carbon dioxide is reported as 37.340+/-0.010 eV. The fragmentation of energy selected CO22+ ions has been investigated with TPEsCO ion coincidence spectroscopy. A band of metastable states from similar to38.7 to similar to41 eV above the ground state of neutral CO2 has been observed in the experimental time window of similar to0.1-2.3 mus with a tendency towards shorter lifetimes at higher energies. It is proposed that the metastability is due to slow spin forbidden conversion from bound excited singlet states to unbound continuum states of the triplet ground state. Another result of this investigation is the observation of CO++O+ formation in indirect dissociative double photoionization below the threshold for formation of CO22+. The threshold for CO++O+ formation is found to be 35.56+/-0.10 eV or lower, which is more than 2 eV lower than previous measurements. (C) 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this communication is to show that the program 'ARGON.f90' can be simply extended to model ionization from the excited states of atoms where the active electron has a principal quantum number less than or equal to 3. This fact is illustrated by considering a relatively simple collision involving a proton and a neutral hydrogen atom with principal quantum number n = 2. (C) 2005 Published by Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Collisional effects can have strong influences on the population densities of excited states in gas discharges at elevated pressure. The knowledge of the pertinent collisional coefficient describing the depopulation of a specific level (quenching coefficient) is, therefore, important for plasma diagnostics and simulations. Phase resolved optical emission spectroscopy (PROES) applied to a capacitively coupled rf discharge excited with a frequency of 13.56 MHz in hydrogen allows the measurement of quenching coefficients for emitting states of various species, particularly of noble gases, with molecular hydrogen as a collision partner. Quenching coefficients can be determined subsequent to electron-impact excitation during the short field reversal phase within the sheath region from the time behavior of the fluorescence. The PROES technique based on electron-impact excitation is not limited â?? in contrast to laser techniques â?? by optical selection rules and the energy gap between the ground state and the upper level of the observed transition. Measurements of quenching coefficients and natural fluorescence lifetimes are presented for several helium (3 1S,4 1S,3 3S,3 3P,4 3S), neon (2p1 ,2p2 ,2p4 ,2p6), argon (3d2 ,3d4 ,3d18 and 3d3), and krypton (2p1 ,2p5) states as well as for some states of the triplet system of molecular hydrogen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photodissociation and photoionization dynamics of HBr via low-n Rydberg and ion-pair states was studied by using 2 + 1 REMPI spectroscopy and velocity map imaging of photoelectrons. Two-photon excitation at about 9.4–10 eV was used to prepare rotationally selected excited states. Following absorption of the third photon the unperturbed F 1Δ(2) and i 3Δ(2) states ionize directly into the ground vibrational state of the molecular ion according to the Franck–Condon principle and upon preservation of the ion core. In case of the V 1Σ+(0+) ion-pair state and the perturbed E 1Σ+(0+), g 3Σ−(0+), and H 1Σ+(0+) Rydberg states the absorption of the third photon additionally results in a long vibrational progression of HBr+ in the X 2Π state as well as formation of electronically excited atomic photofragments. The vibrational excitation of the molecular ion is explained by autoionization of repulsive superexcited states into the ground state of the molecular ion. In contrast to HCl, the perturbed Rydberg states of HBr show strong participation of the direct ionization process, with ionic core preservation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gas temperature is of major importance in plasma based surface treatment, since the surface processes are strongly temperature sensitive. The spatial distribution of reactive species responsible for surface modification is also influenced by the gas temperature. Industrial applications of RF plasma reactors require a high degree of homogeneity of the plasma in contact with the substrate. Reliable measurements of spatially resolved gas temperatures are, therefore, of great importance. The gas temperature can be obtained, e.g. by optical emission spectroscopy (OES). Common methods of OES to obtain gas temperatures from analysis of rotational distributions in excited states do not include the population dynamics influenced by cascading processes from higher electronic states. A model was developed to evaluate this effect on the apparent rotational temperature that is observed. Phase resolved OES confirmed the validity of this model. It was found that cascading leads to higher apparent temperatures, but the deviation (~25 K) is relatively small and can be ignored in most cases. This analysis is applied to investigate axially and radially resolved temperature profiles in an inductively coupled hydrogen RF discharge.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gas temperature is of major importance in plasma based surface treatment, since the surface processes are strongly temperature sensitive. The spatial distribution of reactive species responsible for surface modification is also influenced by the gas temperature. Industrial applications of RF plasma reactors require a high degree of homogeneity of the plasma in contact with the substrate. Reliable measurements of spatially resolved gas temperatures are, therefore, of great importance. The gas temperature can be obtained, e.g. by optical emission spectroscopy (OES). Common methods of OES to obtain gas temperatures from analysis of rotational distributions in excited states do not include the population dynamics influenced by cascading processes from higher electronic states. A model was developed to evaluate this effect on the apparent rotational temperature that is observed. Phase resolved OES confirmed the validity of this model. It was found that cascading leads to higher apparent temperatures, but the deviation (similar or equal to 25 K) is relatively small and can be ignored in most cases. This analysis is applied to investigate axially and radially resolved temperature profiles in an inductively coupled hydrogen RF discharge.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phase resolved optical emission spectroscopy (PROES) bears considerable potential for diagnostics of RF discharges that give detailed insight of spatial and temporal variations of excitation processes. Based on phase and space resolved measurements of the population dynamics of excited states several diagnostic techniques have been developed. Results for a hydrogen capacitively coupled RF (CCRF) discharge are discussed as an example. The gas temperature, the degree of dissociation and the temporally and spatially resolved electron energy distribution function (EEDF) of energetic electrons (>12eV) are measured. Furthermore, the pulsed electron impact excitation during the field reversal phase, typical for hydrogen CCRF discharges, is exploited for measurements of atomic and molecular data like lifetimes of excited states, coefficients for radiationless collisional de-excitation (quenching coefficients), and cascading processes from higher electronic states.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In gas discharges at elevated pressure, radiation-less collisional de-excitation (quenching) has a strong influence on the population of excited states. The knowledge of quenching coefficients is therefore important for plasma diagnostics and simulations. A novel time-resolved optical emission spectroscopic (OES) technique allows the measurement of quenching coefficients for emission lines of various species, particularly of noble gases, with molecular hydrogen as collision partner. The technique exploits the short electron impact excitation during the field reversal phase within the sheath region of a hydrogen capacitively coupled RF discharge at 13.56 MHz. Quenching coefficients can be determined subsequent to this excitation from the effective lifetime of the fluorescence decay at various hydrogen pressures. The measured quenching coefficients agree very well with results obtained by means of laser excitation. The time-resolved OES technique based on electron impact excitation is not limited - in contrast to laser techniques - by optical selection rules and the energy gap between the ground state and the observed excited level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The two-photon resonances of atomic hydrogen (? = 2 × 205.1 nm), atomic nitrogen (? = 2 × 206.6 nm) and atomic oxygen (? = 2 × 225.6 nm) are investigated together with two selected transitions in krypton (? = 2×204.2 nm) and xenon (? = 2×225.5 nm). The natural lifetimes of the excited states, quenching coefficients for the most important collisions partners, and the relevant ratios of the two-photon excitation cross sections are measured. These data can be applied to provide a calibration for two-photon laser-induced fluorescence measurements based on comparisons with spectrally neighbouring noble gas resonances.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The complex dynamics of radio-frequency driven atmospheric pressure plasma jets is investigated using various optical diagnostic techniques and numerical simulations. Absolute number densities of ground state atomic oxygen radicals in the plasma effluent are measured by two-photon absorption laser induced fluorescence spectroscopy (TALIF). Spatial profiles are compared with (vacuum) ultra-violet radiation from excited states of atomic oxygen and molecular oxygen, respectively. The excitation and ionization dynamics in the plasma core are dominated by electron impact and observed by space and phase resolved optical emission spectroscopy (PROES). The electron dynamics is governed through the motion of the plasma boundary sheaths in front of the electrodes as illustrated in numerical simulations using a hybrid code based on fluid equations and kinetic treatment of electrons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In dielectronic recombination of hydrogenlike ions an intermediate doubly excited heliumlike ion is formed. Since the K shell is empty, both excited electrons can decay sequentially to the ground state. In this paper we analyze the x-ray radiation emitted from doubly and singly excited heliumlike titanium ions produced inside the Tokyo electron beam ion trap. Theoretical population densities of the singly excited states after the first transition and the transition probabilities of these states into the ground state were also calculated. This allowed theoretical branching ratios to be determined for each manifold. These branching ratios are compared to the experimentally obtained x-ray distribution by fitting across the relevant peak using a convolution of the theoretically obtained resonance strengths and energies. By taking into account 2E1 transitions which are not observed in the experiment, the measured and calculated ratios agree well. This method provides a valuable insight into the transition dynamics of excited highly charged ions.