952 resultados para Suspended matter of the mud bank
Resumo:
A major trough ('Belgica Trough') eroded by a palaeo-ice stream crosses the continental shelf of the southern Bellingshausen Sea (West Antarctica) and is associated with a trough mouth fan ('Belgica TMF') on the adjacent continental slope. Previous marine geophysical and geological studies investigated the bathymetry and geomorphology of Belgica Trough and Belgica TMF, erosional and depositional processes associated with bedform formation, and the temporal and spatial changes in clay mineral provenance of subglacial and glaciomarine sediments. Here, we present multi-proxy data from sediment cores recovered from the shelf and uppermost slope in the southern Bellingshausen Sea and reconstruct the ice-sheet history since the last glacial maximum (LGM) in this poorly studied area of West Antarctica. We combined new data (physical properties, sedimentary structures, geochemical and grain-size data) with published data (shear strength, clay mineral assemblages) to refine a previous facies classification for the sediments. The multi-proxy approach allowed us to distinguish four main facies types and to assign them to the following depositional settings: 1) subglacial, 2) proximal grounding-line, 3) distal sub-ice shelf/subsea ice, and 4) seasonal open-marine. In the seasonal open-marine facies we found evidence for episodic current-induced winnowing of near-seabed sediments on the middle to outer shelf and at the uppermost slope during the late Holocene. In addition, we obtained data on excess 210Pb activity at three core sites and 44 AMS 14C dates from the acid-insoluble fraction of organic matter (AIO) and calcareous (micro-)fossils, respectively, at 12 sites. These chronological data enabled us to reconstruct, for the first time, the timing of the last advance and retreat of the West Antarctic Ice Sheet (WAIS) and the Antarctic Peninsula Ice Sheet (APIS) in the southern Bellingshausen Sea. We used the down-core variability in sediment provenance inferred from clay mineral changes to identify the most reliable AIO 14C ages for ice-sheet retreat. The palaeo-ice stream advanced through Belgica Trough after ~36.0 corrected 14C ka before present (B.P.). It retreated from the outer shelf at ~25.5 ka B.P., the middle shelf at ~19.8 ka B.P., the inner shelf in Eltanin Bay at ~12.3 ka B.P., and the inner shelf in Ronne Entrance at ~6.3 ka B.P.. The retreat of the WAIS and APIS occurred slowly and stepwise, and may still be in progress. This dynamical ice-sheet behaviour has to be taken into account for the interpretation of recent and the prediction of future mass-balance changes in the study area. The glacial history of the southern Bellingshausen Sea is unique when compared to other regions in West Antarctica, but some open questions regarding its chronology need to be addressed by future work.
Resumo:
The concentrations, distributions, and stable carbon isotopes (d13C) of plant waxes carried by fluvial suspended sediments contain valuable information about terrestrial ecosystem characteristics. To properly interpret past changes recorded in sedimentary archives it is crucial to understand the sources and variability of exported plant waxes in modern systems on seasonal to inter-annual timescales. To determine such variability, we present concentrations and d13C compositions of three compound classes (n-alkanes, n-alcohols, n-alkanoic acids) in a 34-month time series of suspended sediments from the outflow of the Congo River. We show that exported plant-dominated n-alkanes (C25-C35) represent a mixture of C3 and C4 end members, each with distinct molecular distributions, as evidenced by an 8.1 ± 0.7 per mil (±1Sigma standard deviation) spread in d13C values across chain-lengths, and weak correlations between individual homologue concentrations (r = 0.52-0.94). In contrast, plant-dominated n-alcohols (C26-C36) and n-alkanoic acids (C26-C36) exhibit stronger positive correlations (r = 0.70-0.99) between homologue concentrations and depleted d13C values (individual homologues average <= -31.3 per mil and -30.8 per mil, respectively), with lower d13C variability across chain-lengths (2.6 ± 0.6 per mil and 2.0 ± 1.1 per mil, respectively). All individual plant-wax lipids show little temporal d13C variability throughout the time-series (1 Sigma <= 0.9 per mil), indicating that their stable carbon isotopes are not a sensitive tracer for temporal changes in plant-wax source in the Congo basin on seasonal to inter-annual timescales. Carbon-normalized concentrations and relative abundances of n-alcohols (19-58% of total plant-wax lipids) and n-alkanoic acids (26-76%) respond rapidly to seasonal changes in runoff, indicating that they are mostly derived from a recently entrained local source. In contrast, a lack of correlation with discharge and low, stable relative abundances (5-16%) indicate that n-alkanes better represent a catchment-integrated signal with minimal response to discharge seasonality. Comparison to published data on other large watersheds indicates that this phenomenon is not limited to the Congo River, and that analysis of multiple plant-wax lipid classes and chain lengths can be used to better resolve local vs. distal ecosystem structure in river catchments.
Resumo:
The monograph focuses on the analysis of data addressing the problem of H2S contamination and oxic-anoxic interface in the Black Sea. Regularities of the fine structure of vertical distribution of oxygen, hydrogen sulfide, biogenic elements, organic substances, suspended matter, and metals of the iron-manganese group in the area of contact of aerobic and anaerobic waters have been revealed. Also effects of biochemical, physico-chemical and dynamic processes on their vertical distribution have been examined. Sulfate reduction in seawater and bottom sediments has been studied. Quantitative estimates of H2S fluxes at the water - bottom sediment and O2-H2S interfaces have been done. Features of H2S oxidation have been studied, its budget in the Black Sea has been calculated. Multiyear spatial-temporal variability of the oxic-anoxic interface has been investigated.
Resumo:
Twelve submarine mud volcanoes (MV) in the Kumano forearc basin within the Nankai Trough subduction zone were investigated for hydrocarbon origins and fluid dynamics. Gas hydrates diagnostic for methane concentrations exceeding solubilities were recovered from MVs 2, 4, 5, and 10. Molecular ratios (C1/C2<250) and stable carbon isotopic compositions (d13C-CH4 >-40 per mil V-PDB) indicate that hydrate-bound hydrocarbons (HCs) at MVs 2, 4, and 10 are derived from thermal cracking of organic matter. Considering thermal gradients at the nearby IODP Sites C0009 and C0002, the likely formation depth of such HCs ranges between 2300 and 4300 m below seafloor (mbsf). With respect to basin sediment thickness and the minimum distance to the top of the plate boundary thrust we propose that the majority of HCs fueling the MVs is derived from sediments of the Cretaceous to Tertiary Shimanto belt below Pliocene/Pleistocene to recent basin sediments. Considering their sizes and appearances hydrates are suggested to be relicts of higher MV activity in the past, although the sporadic presence of vesicomyid clams at MV 2 showed that fluid migration is sufficient to nourish chemosynthesis-based organisms in places. Distributions of dissolved methane at MVs 3, 4, 5, and 8 pointed at fluid supply through one or few MV conduits and effective methane oxidation in the immediate subsurface. The aged nature of the hydrates suggests that the major portion of methane immediately below the top of the methane-containing sediment interval is fueled by current hydrate dissolution rather than active migration from greater depth.
Resumo:
Lipid contents in the upper layer of bottom sediments in the Baltic Sea range from 0.37 to 2.66 mg/g (1.2-25.8% Corg). It is shown that the main factors determining composition of lipids in bottom precipitates are relative roles of different sources of lipids in sediments and conditions of sediment accumulation. Runoff of the Daugava River into the Gulf of Riga contributes simple low-polarity lipids. Sterols and certain bound fatty acids originate in living organic matter. Polar lipids are formed by inheritance of complex phospholipids and glycolipids from plankton and/or by formation of polycondensates.
Resumo:
Zinc stable isotopes measurements by MC-ICP-MS, validated by laboratory intercalibrations, were performed on wild oysters, suspended particles and filtered river/estuarine water samples to provide new constraints for the use of Zn isotopes as environmental tracers. The samples selected were representative of the long range (400 km) transport of metal (Zn, Cd, etc.) contamination from former Zn-refining activities at Decazeville (i.e. δ66Zn > 1 ‰) and its phasing out, recorded during 30 years in wild oysters from the Gironde Estuary mouth (RNO/ROCCH sample bank). The study also addresses additional anthropogenic sources (urban and viticulture) and focuses on geochemical reactivity of Zn in the turbidity gradient and the maximum turbidity zone (MTZ) of the fluvial Gironde Estuary. In this area, dissolved Zn showed a strong removal onto suspended particulate matter (SPM) and progressive enrichment in heavy isotopes with increasing SPM concentrations varying from δ66Zn = -0.02 ‰ at 2 mg/L to +0.90 ‰ at 1310 mg/L. These signatures were attributed to kinetically driven adsorption due to strongly increasing sorption sites in the turbidity gradient and MTZ of the estuary. Oysters from the estuary mouth, contaminated sediments from the Lot River and SPM entering the estuary showed parallel historical evolutions (1979-2010) for Zn/Cd ratios but not for δ66Zn values. Oysters had signatures varying from δ66Zn = 1.43 ‰ in 1983 to 1.18 ‰ in 2010 and were offset by δ66Zn = 0.6 - 0.7 ‰ compared to past (1988) and present SPM from the salinity gradient. Isotopic signatures in river-borne particles entering the Gironde Estuary under contrasting freshwater discharge regimes during 2003-2011 showed similar values (δ66Zn ≈ 0.35 ± 0.03 ‰; 1SD, n=15), i.e. they were neither related to former metal refining activities at least for the past decade nor clearly affected by other anthropogenic sources. Therefore, the Zn isotopic signatures in Gironde oysters reflect the geochemical reactivity of Zn in the estuary rather than signatures of past metallurgical contaminations in the watershed as recorded in contaminated river sediments. The study also shows that the isotopic composition of Zn is strongly fractionated by its geochemical reactivity in the Gironde Estuary, representative of meso-macrotidal estuarine systems.
Resumo:
Growth in the development and production of engineered nanoparticles (ENPs) in recent years has increased the potential for interactions of these nanomaterials with aquatic and terrestrial environments. Carefully designed studies are therefore required in order to understand the fate, transport, stability, and toxicity of nanoparticles. Natural organic matter (NOM), such as the humic substances found in water, sediment, and soil, is one of the substances capable of interacting with ENPs. This review presents the findings of studies of the interaction of ENPs and NOM, and the possible effects on nanoparticle stability and the toxicity of these materials in the environment. In addition, ENPs and NOM are utilized for many different purposes, including the removal of metals and organic compounds from effluents, and the development of new electronic sensors and other devices for the detection of active substances. Discussion is therefore provided of some of the ways in which NOM can be used in the production of nanoparticles. Although there has been an increase in the number of studies in this area, further progress is needed to improve understanding of the dynamic interactions between ENPs and NOM.
Resumo:
The present study determined the distribution pattern of the hermit crab Loxopagurus loxochelis by a comparison of catch, depth and environmental factors at two separate bays (Caraguatatuba and Ubatuba) of Sao Paulo State, Brazil. The influence of these parameters on the distribution of males, non- ovigerous females and ovigerous females was also evaluated. Crabs were collected monthly, over a period of one year (from July/2002 to June/2003), in seven depths, from 5 to 35 m. Abiotic factors were monitored as follows: superficial and bottom salinity (psu), superficial and bottom temperature (C), organic matter content (%) and sediment composition (%). In total, 366 hermit crabs were sampled in Caraguatatuba and 126 in Ubatuba. The highest frequency of occurrence was verified at 20 m during winter (July) in Caraguatatuba and 25 m during summer (January) in Ubatuba. The highest occurrences were recorded in the regions with bottom salinities ranging from 34 to 36 psu, bottom temperatures from 18 to 24 C and, low percentages of organic matter, gravel and mud; and large proportion of sand in the substrate. There was no significant correlation between the total frequency of organisms and the environmental factors analyzed in both regions. This evidence suggests that other variables as biotic interactions can influence the pattern of distribution of L. loxochelis in the analyzed region, which is considered the limit of the northern distribution of this species.
Resumo:
We discuss the dynamics of the Universe within the framework of the massive graviton cold dark matter scenario (MGCDM) in which gravitons are geometrically treated as massive particles. In this modified gravity theory, the main effect of the gravitons is to alter the density evolution of the cold dark matter component in such a way that the Universe evolves to an accelerating expanding regime, as presently observed. Tight constraints on the main cosmological parameters of the MGCDM model are derived by performing a joint likelihood analysis involving the recent supernovae type Ia data, the cosmic microwave background shift parameter, and the baryonic acoustic oscillations as traced by the Sloan Digital Sky Survey red luminous galaxies. The linear evolution of small density fluctuations is also analyzed in detail. It is found that the growth factor of the MGCDM model is slightly different (similar to 1-4%) from the one provided by the conventional flat Lambda CDM cosmology. The growth rate of clustering predicted by MGCDM and Lambda CDM models are confronted to the observations and the corresponding best fit values of the growth index (gamma) are also determined. By using the expectations of realistic future x-ray and Sunyaev-Zeldovich cluster surveys we derive the dark matter halo mass function and the corresponding redshift distribution of cluster-size halos for the MGCDM model. Finally, we also show that the Hubble flow differences between the MGCDM and the Lambda CDM models provide a halo redshift distribution departing significantly from the those predicted by other dark energy models. These results suggest that the MGCDM model can observationally be distinguished from Lambda CDM and also from a large number of dark energy models recently proposed in the literature.
Resumo:
We investigate the effect of an interaction between dark energy and dark matter upon the dynamics of galaxy clusters. This effect is computed through the Layser-Irvine equation, which describes how an astrophysical system reaches virial equilibrium and was modified to include the dark interactions. Using observational data from almost 100 purportedly relaxed galaxy clusters we put constraints on the strength of the couplings in the dark sector. We compare our results with those from other observations and find that a positive (in the sense of energy flow from dark energy to dark matter) nonvanishing interaction is consistent with the data within several standard deviations.
Resumo:
The quasi-elastic excitation function for the (17)O+(64)Zn system was measured at energies near and below the Coulomb barrier, at the backward angle theta(lab) = 161 degrees. The corresponding quasi-elastic barrier distribution was derived. The excitation function for the neutron stripping reactions was also measured, at the same angle and energies, and the experimental values of the spectroscopic factors were deduced by fitting the data. A reasonably good agreement was obtained between the experimental quasi-elastic barrier distribution with the coupled-channel calculations including a very large number of channels. Of the channels investigated, three dominated the coupling matrix: two inelastic channels, (64)Zn(2(1)(+)) and (17)O(1/(+)(2)), and one-neutron transfer channel, particularly the first one. On the other hand, a very good agreement is obtained when we use a nuclear diffuseness for the (17)O nucleus larger than the one for (16)O. We verify that quasi-elastic barrier distribution is a sensitive tool for determining nuclear matter diffuseness.