906 resultados para Surface-area Reduction
Resumo:
The development of technological routes to convert lignocellulosic biomass to liquid fuels requires an in-depth understanding of the cell wall architecture of substrates. Essential pretreatment processes are conducted to reduce biomass recalcitrance and usually increase the reactive surface area. Quantitative three-dimensional information about both bulk and surface structural features of substrates needs to be obtained to expand our knowledge of substrates. In this work, phase-contrast tomography (PCT) was used to gather information about the structure of a model lignocellulosic biomass (piassava fibers). The three-dimensional cellular organization of piassava fibers was characterized by PCT using synchrotron radiation. This technique enabled important physical features that describe the substrate piassava fibers to be visualized and quantified. The external surface area of a fiber and internal surface area of the pores in a fiber could be determined separately. More than 96% of the overall surface area available to enzymes was in the bulk substrate. The pore surface area and length exhibited a positive linear relationship, where the slope of this relationship depended on the plant tissue. We demonstrated that PCT is a powerful tool for the three-dimensional characterization of the cell wall features related to biomass recalcitrance. Original and relevant quantitative information about the structural features of the analyzed material were obtained. The data obtained by PCT can be used to improve processing routes to efficiently convert biomass feedstock into sugars.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
OBJETIVO: A prática de exercícios físicos, devido à produção inerente de calor, pode conduzir à desidratação. A maioria dos estudos que abordam os riscos da desidratação e fornecem recomendações de reposição hídrica é direcionada a indivíduos adultos residentes em regiões de clima temperado, porém, em regiões tropicais, pouco é conhecido sobre as necessidades de reposição hídrica em crianças fisicamente ativas. Esta revisão discute as recomendações para esta população e estabelece os riscos da prática esportiva em ambiente de clima tropical. FONTES DE DADOS: Análise sistemática com levantamento da literatura nacional (SciELO) e internacional (Medline) de artigos publicados entre 1972 e 2009, com os seguintes descritores isolados ou em combinação: hidratação, crianças, desidratação e reposição hídrica. Foram selecionados artigos publicados nas línguas portuguesa e inglesa. SÍNTESES DE DADOS: Observou-se que há riscos de desidratação e possível desenvolvimento de um quadro de hipertermia principalmente se as crianças são submetidas a condições climáticas desfavoráveis sem reposição hídrica adequada. O principal fator desencadeante da hipertermia é a menor adaptação das crianças aos extremos de temperatura, em comparação aos adultos, por possuírem área maior de superfície corporal e capacidade menor de termorregulação por evaporação. CONCLUSÕES: Conhecidos os fatores intervenientes da desidratação, a melhor recomendação, perante uma condição climática sabidamente desfavorável, é estabelecer um plano impositivo de hidratação com bebida com sabor e acréscimo de carboidratos e sódio, evitando-se uma perda hídrica significativa, diminuição da performance e, principalmente, com o objetivo de reduzir os riscos à saúde impostos pela hipertermia e desidratação a crianças fisicamente ativas.
Resumo:
Glioxal pode ser obtido a partir de biomassa (como da oxidação de lipídeos) e não é tóxico ou volátil, tendo sido por isso utilizado no presente trabalho como substituto de formaldeído na preparação de resina fenólica do tipo novolaca, sendo usado como catalisador o ácido oxálico, que também pode ser obtido de fontes renováveis. A resina glioxal-fenol foi utilizada na preparação de compósitos reforçados com celulose microcristalina (CM, 30, 50 e 70% em massa), uma celulose com elevada área superficial. As imagens de microscopia eletrônica de varredura (MEV) das superfícies fraturadas demonstraram que os compósitos apresentaram boa interface reforço/matriz, consequência da elevada área superficial da CM e presença de grupos polares (hidroxilas) tanto na matriz como na celulose, o que permitiu a formação de ligações hidrogênio, favorecendo a compatibilidade entre ambas. A análise térmica dinâmico-mecânica (DMTA) demonstrou que todos os compósitos apresentaram elevado módulo de armazenamento à temperatura ambiente. Além disso, o compósito reforçado com 30% de CM apresentou baixa absorção de água, comparável à do termorrígido fenólico, que é utilizado em escala industrial. Os resultados demonstraram que compósitos com boas propriedades podem ser preparados usando elevada proporção de materiais obtidos de biomassa.
Resumo:
We report the synthesis of single-phase, crystalline CdSiO3 nanostructures at 580ºC; to the best of our knowledge, this is the lowest temperature at which this material is reported to form. The desired phase does not form below 580ºC, since the diffraction peaks are shifted to lower angles in the material treated at 570ºC when compared to JDPDS Card No. 85-0310. The source of silicon has strong influence on the product morphology: Na2SiO3 yields single-phase CdSiO3 in needle-shaped nanostructures, while high surface area mesostructured SiO2 yields coralloid-shaped particles. Low angle X-ray diffractometry reveals that the mesostructured nature of the silica precursor is not maintained in the resulting CdSiO3. Scanning electron microscopy suggests that in this case a transition occurs between the spherical morphology of the precursor and the needle-shape morphology of the material prepared from Na2SiO3. The surface area of the silica precursor has a strong influence in the reaction, since the use of commercial silica with a lower surface area does not yield the desired product.
Resumo:
Due to the development of nanoscience, the interest in electrochromism has increased and new assemblies of electrochromic materials at nanoscale leading to higher efficiencies and chromatic contrasts, low switching times and the possibility of color tuning have been developed. These advantages are reached due to the extensive surface area found in nanomaterials and the large amount of organic electrochromic molecules that can be easily attached onto inorganic nanoparticles, as TiO2 or SiO2. Moreover, the direct contact between electrolyte and nanomaterials produces high ionic transfer rates, leading to fast charge compensation, which is essential for high performance electrochromic electrodes. Recently, the layer-by-layer technique was presented as an interesting way to produce different architectures by the combination of both electrochromic nanoparticles and polymers. The present paper shows some of the newest insights into nanochromic science.
Resumo:
We have synthesized the amphiphile photosensitizer PE-porph consisting of a porphyrin bound to a lipid head-group. We studied by optical microscopy the response to light irradiation of giant unilamellar vesicles of mixtures of unsaturated phosphatidylcholine lipids and PE-porph. In this configuration, singlet oxygen is produced at the bilayer surface by the anchored porphyrin. Under irradiation, the PE-porph decorated giant unilamellar vesicles exhibit a rapid increase in surface area with concomitant morphological changes. We quantify the surface area increase of the bilayers as a function of time and photosensitizer molar fraction. We attribute this expansion to hydroperoxide formation by the reaction of the singlet oxygen with the unsaturated bonds. Considering data from numeric simulations of relative area increase per phospholipid oxidized (15%), we measure the efficiency of the oxidative reactions. We conclude that for every 270 singlet oxygen molecules produced by the layer of anchored porphyrins, one eventually reacts to generate a hydroperoxide species. Remarkably, the integrity of the membrane is preserved in the full experimental range explored here, up to a hydroperoxide content of 60%, inducing an 8% relative area expansion.
Resumo:
A recent estimate of CO(2) outgassing from Amazonian wetlands suggests that an order of magnitude more CO(2) leaves rivers through gas exchange with the atmosphere than is exported to the ocean as organic plus inorganic carbon. However, the contribution of smaller rivers is still poorly understood, mainly because of limitations in mapping their spatial extent. Considering that the largest extension of the Amazon River network is composed of small rivers, the authors` objective was to elucidate their role in air-water CO(2) exchange by developing a geographic information system ( GIS)- based model to calculate the surface area covered by rivers with channels less than 100 m wide, combined with estimated CO(2) outgassing rates at the Ji-Parana River basin, in the western Amazon. Estimated CO(2) outgassing was the main carbon export pathway for this river basin, totaling 289 Gg C yr(-1), about 2.4 times the amount of carbon exported as dissolved inorganic carbon ( 121 Gg C yr(-1)) and 1.6 times the dissolved organic carbon export ( 185 Gg C yr(-1)). The relationships established here between drainage area and channel width provide a new model for determining small river surface area, allowing regional extrapolations of air - water gas exchange. Applying this model to the entire Amazon River network of channels less than 100 m wide ( third to fifth order), the authors calculate that the surface area of small rivers is 0.3 +/- 0.05 million km(2), and it is potentially evading to the atmosphere 170 +/- 42 Tg C yr(-1) as CO(2). Therefore, these ecosystems play an important role in the regional carbon balance.
Resumo:
Cadmium is known to be a toxic agent that accumulates in the living organisms and present high toxicity potential over lifetime. Efforts towards the development of methods for microanalysis of environmental samples, including the determination of this element by graphite furnace atomic absorption spectrometry (GFAAS). inductively coupled plasma optical emission spectrometry (ICP OES), and inductively coupled plasma-mass spectrometry (ICP-MS) techniques, have been increasing. Laser induced breakdown spectroscopy (UBS) is an emerging technique dedicated to microanalysis and there is a lack of information dealing with the determination of cadmium. The aim of this work is to demonstrate the feasibility of LIBS for cadmium detection in soils. The experimental setup was designed using a laser Q-switched (Nd:YAG, 10 Hz, lambda = 1064 nm) and the emission signals were collimated by lenses into an optical fiber Coupled to a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Samples were cryogenically ground and thereafter pelletized before LIBS analysis. Best results were achieved by exploring a test portion (i.e. sampling spots) with larger surface area, which contributes to diminish the uncertainty due to element specific microheterogeneity. Calibration curves for cadmium determination were achieved using certified reference materials. The metrological figures of merit indicate that LIBS can be recommended for screening of cadmium contamination in soils. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Hybrid matrices of polysiloxane-polyvinyl alcohol (POS-PVA) were prepared by sol-gel technique using different concentrations of the organic component (polyvinyl alcohol, PVA) in the synthesis medium. The goal was to prepare carriers for immobilizing enzyme by taking into consideration properties as hardness, mean pore diameter, specific surface area and pore size distribution. The matrices were activated with sodium metaperiodate to render functional groups for binding the lipase from Candida rugosa, used here as a study model. Results showed that low proportion of PVA gave POS-PVA with low surface area and pore volume, although with higher hardness. The chemical activation decreased the pore volume and increased the pore size with a decrease on the surface area of about 60-75%. The matrices for enzyme immobilization were chosen considering the best combination of high surface area and hardness. Thus, the POS-PVA prepared with 5.56 x 10(-5) M of PVA with a surface area of 123 m(2)/g and hardness of 71 HV (50 gf 30 s) was shown to be suitable to immobilize the lipase, with an immobilization yield of about 40%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Different types of activated carbon were prepared by chemical activation of brewer`s spent grain (BSG) lignin using H(3)PO(4) at various acid/lignin ratios (1, 2, or 3 g/g) and carbonization temperatures (300, 450, or 600 degrees C), according to a 2(2) full-factorial design. The resulting materials were characterized with regard to their surface area, pore volume, and pore size distribution, and used for detoxification of BSG hemicellulosic hydrolysate (a mixture of sugars, phenolic compounds, metallic ions, among other compounds). BSG carbons presented BET surface areas between 33 and 692 m(2)/g, and micro- and mesopores with volumes between 0.058 and 0.453 cm(3)/g. The carbons showed high capacity for adsorption of metallic ions, mainly nickel, iron, chromium, and silicon. The concentration of phenolic compounds and color were also reduced by these sorbents. These results suggest that activated carbons with characteristics similar to those commercially found and high adsorption capacity can be produced from BSG lignin. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Hydrous niobium oxide (Nb(2)O(5)center dot nH(2)O) nanoparticles had been Successfully prepared by water-in-oil microemulsion. They were characterized by X-ray diffraction (XRD), thermal analysis (TG/DTG), Fourier transform infrared spectroscopy (FTIR), BET surface area measurement, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the nanoparticle was exactly Nb(2)O(5)center dot nH(2)O with spherical shape. Their BET surface area was 60 m(2) g(-1). XRD results showed that Nb(2)O(5)center dot nH(2)O nanoparticles with crystallite size in nanometer scale were formed. The crystallinity and crystallity size increased with increasing annealing temperature. TT-phase of Nb(2)O(5) was obtained when the sample is annealed at 550 degrees C. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The influence of granulometry and organic treatment of a Brazilian montmorillonite (MMT) clay on the synthesis and properties of poly(styrene-co-n-butyl acrylate)/layered silicate nanocomposites was studied. Hybrid latexes of poly(styrene-co-butyl acrylate)/MMT were synthesized via miniemulsion polymerization using either sodium or organically modified MMT. Five clay granulometries ranging from clay particles smaller than 75 mu m to colloidal size were selected. The size of the clay particles was evaluated by Specific surface area measurements (BET). Cetyl trimethyl ammonium chloride was used as an organic modifier to enhance the clay compatibility with the monomer phase before polymerization and to improve the clav distribution and dispersion within the polymeric matrix after polymerization. The sodium and organically modified natural clays as well as the composites were characterized by X-ray diffraction analysis. The latexes were characterized by dynamic light scattering. The mechanical, thermal, and rheological properties of the composites obtained were characterized by dynamical-mechanical analysis, thermogravimetry, and small amplitude oscillatory, shear tests, respectively. The results showed that smaller the size of the organically modified MMT, the higher the degree of exfoliation of nanoplatelets. Hybrid latexes in presence of Na-MMT resulted in materials with intercalated structures. (C) 2009 Wiley, Periodicals, Inc. J Appl Polym Sci 112: 1949-1958, 2009
Resumo:
In this work, SiC ceramics were liquid phase sintered (LPS), using AIN-Y(2)O(3) as additives, and oxidized at 1400 degrees C in air for up to 120 h. Oxidation was monitored by the weight gain of the samples as function of exposition time and temperature. A parabolic growth of the oxidation layer has been observed and the coefficient of the growth rate has been determined by relating the weight gain and the surface area. The effect of oxidation on strength has been determined by 4-point bending tests. Phase analysis by Xray diffraction and microstructural observation by scanning electron microscopy indicated the formation of a uniform and dense oxidation layer. The elimination of surface flaws and pores and the generation of compressive stresses in the surface resulted in a strength increase of the oxidized samples. (C) 2009 Published by Elsevier Ltd.
Resumo:
Several papers have reported the advantageous combination of chitosan and ceramic particles for such applications as biomimetic scaffolds, membranes, pollution remediation and gelcasting complex shapes. This work presents a novel gelcasting consolidation mechanism, based on the effects of pH changes on chitosan solubility and zeta potential of alumina particles. Unlike other chitosan-based gelcasting methods, it employs a small content of organic material (lower than 3 wt%) and does not require crosslinking agents (such as glutaraldehyde). With this new method alumina beads with 0.5-1 mm diameter could be produced, whose porosity and specific surface area could be tuned for various applications. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.