998 resultados para Standard deviation (STD)
Miocene-Pliocene record of Pollen, charcoal and carbon isotopes of plant waxes of ODP Hole 175-1081A
Resumo:
Modern savannah grasslands were established during the late Miocene and Pliocene (8-3 million years ago). In the tropics, grasslands are dominated by grasses that use the C4 photosynthetic pathway, rather than the C3 pathway. The C4 pathway is better adapted to warm, dry and low-CO2 conditions, leading to suggestions that declining atmospheric CO2 levels, increasing aridity and enhanced rainfall seasonality allowed grasses using this pathway to expand during this interval. The role of fire in C4 expansion may have been underestimated. Here we use analyses of pollen, microscopic charcoal and the stable isotopic composition of plant waxes from a marine sediment core off the coast of Namibia to reconstruct the relative timing of changes in plant composition and fire activity for the late Miocene and Pliocene. We find that in southwestern Africa, the expansion of C4 grasses occurred alongside increasing aridity and enhanced fire activity. During further aridification in the Pliocene, the proportion of C4 grasses in the grasslands increased, while the grassland contracted and deserts and semi-deserts expanded. Our results are consistent with the hypothesis that ecological disturbance by fire was an essential feedback mechanism leading to the establishment of C4 grasslands in the Miocene and Pliocene.
Resumo:
The IMAGES core MD99-2343, recovered from a sediment drift north of the island of Minorca, in the north-western Mediterranean Sea, holds a high-resolution sequence that is perfectly suited to study the oscillations of the overturning system of the Western Mediterranean Deep Water (WMDW). Detailed analysis of grain-size and bulk geochemical composition reveals the sensitivity of this region to climate changes at both orbital and centennial-millennial temporal scales during the last 50 kyr. The dominant orbital pattern in the K/Al record indicates that sediment supply to the basin was controlled by the insolation evolution at 40°N, which forced changes in the fluvial regime, with more efficient sediment transport during insolation maxima. This orbital control also modulated the long-term pattern of the WMDW intensity as illustrated by the silt/clay ratio. However, deep convection was particularly sensitive to climatic changes at shorter time-scales, i.e. to centennial-millennial glacial and Holocene oscillations that are well documented by all the paleocurrent intensity proxies (Si/Al, Ti/Al and silt/clay ratios). Benthic isotopic records (d13C and d18O) show a Dansgaard-Oeschger (D-O) pattern of variability of WMDW properties, which can be associated with changing intensities of the deep currents system. The most prominent reduction on the WMDW overturning was caused by the post-glacial sea level rise. Three main scenarios of WMDW overturning are revealed: a strong mode during D-O Stadials, a weak mode during D-O Interstadials and an intermediate mode during cooling transitions. In addition, D-O Stadials associated with Heinrich events (HEs) have a very distinct signature as the strong mode of circulation, typical for the other D-O Stadials, was never reached during HE due to the surface freshening induced by the inflowing polar waters. Consequently, the WMDW overturning system oscillated around the intermediate mode of circulation during HE. Though surface conditions were more stable during the Holocene, the WMDW overturning cell still reacted synchronously to short-lived events, as shown by increments in the planktonic d18O record, triggering quick reinforcements of the deep water circulation. Overall, these results highlight the sensitivity of the WMDW to rapid climate change which in the recent past were likely induced by oceanographic and atmospheric reorganizations in the North Atlantic region.
Resumo:
The membrane lipids diglycosyl-glycerol dibiphytanyl glycerol tetraethers (2G-GDGTs) in marine subsurface sediments are believed to originate from uncultivated benthic archaea, yet the production of 2G-GDGTs from subseafloor samples has not been demonstrated in vitro. In order to validate sedimentary biosynthesis of 2G-GDGTs, we performed a stable carbon isotope probing experiment on a subseafloor sample with six different 13C-labelled substrates (bicarbonate, methane, acetate, leucine, glucose and Spirulina platensis biomass). After 468 days of anoxic incubation, only glucose and S. platensis resulted in label uptake in lipid moieties of 2G-GDGTs, indicating incorporation of carbon from these organic substrates. The hydrophobic moieties of 2G-GDGTs showed minimal label incorporation, with up to 4 per mil 13C enrichment detected in crenarchaeol-derived tricyclic biphytane from the S. platensis-supplemented slurries. The 2G-GDGT-derived glucose or glycerol moieties also showed 13C incorporation (Dd13C = 18 - 38 per mil) in the incubations with glucose or S. platensis, consistent with a lipid salvage mechanism utilized by marine benthic archaea to produce new 2G-GDGTs. The production rates were nevertheless rather slow, even when labile organic matter was supplied. The 2G-GDGT turnover times of 1700 - 20 500 years were much longer than those estimated for subseafloor microbial communities, implying that sedimentary 2G-GDGTs as biomarkers of benthic archaea are cumulative records of past and present generations.
Resumo:
In-situ Fe isotope measurements have been carried out to estimate the impact of the hydrothermal metamorphic overprint on the Fe isotopic composition of Fe-Ti-oxides and Fe-sulfides of the different lithologies of the drilled rocks from IODP Hole 1256D (eastern equatorial Pacific; 15 Ma crust formed at the East Pacific Rise). Most igneous rocks normally have a very restricted range in their 56Fe/54Fe ratio. In contrast, Fe isotope compositions of hot fluids (> 300 °C) from mid-ocean-ridge spreading centers define a narrow range that is shifted to lower delta 56Fe values by 0.2 per mil - 0.5 per mil as compared to igneous rocks. Therefore, it is expected that mineral phases that contain large amounts of Fe are especially affected by the interaction with a fluid that fractionates Fe isotopes during exsolution/precipitation of those minerals. We have used a femtosecond UV-Laser ablation system to determine mineral 56Fe/54Fe ratios of selected samples with a precision of < 0.1 per mil (2 sigma level) at micrometer-scale. We have found significant variations of the delta 56Fe (IRMM-014) values in the minerals between different samples as well as within samples and mineral grains. The overall observed scale of delta 56Fe (magnetite) in 1256D rocks ranges from - 0.12 to + 0.64 per mil, and of delta 56Fe (ilmenite) from - 0.77 to + 0.01 per mil. Pyrite in the lowermost sheeted dike section is clearly distinguishable from the other investigated lithological units, having positive delta 56Fe values between + 0.29 and + 0.56 per mil, whereas pyrite in the other samples has generally negative delta 56Fe values from - 1.10 to - 0.59 permil. One key observation is that the temperature dependent inter-mineral fractionations of Fe isotopes between magnetite and ilmenite are systematically shifted towards higher values when compared to theoretically expected values, while synthesized, well equilibrated magnetite-ilmenite pairs are compatible with the theoretical predictions. Theoretical considerations including beta-factors of different aqueous Fe-chlorides and Rayleigh-type fractionations in the presence of a hydrous, chlorine-bearing fluid can explain this observation. The disagreement between observed and theoretical equilibrium fractionation, the fact that magnetite, in contrast to ilmenite shows a slight downhole trend in the delta 56Fe values, and the observation of small scale heterogeneities within single mineral grains imply that a general re-equilibration of the magnetite-ilmenite pairs is overprinted by kinetic fractionation effects, caused by the interaction of magnetite/ilmenite with hydrothermal fluids penetrating the upper oceanic crust during cooling, or incomplete re-equilibration at low temperatures. Furthermore, the observation of significant small-scale variations in the 56Fe/54Fe ratios of single minerals in this study highlights the importance of high spatial-resolution-analyses of stable isotope ratios for further investigations.
Resumo:
Boninites are unusual high MgO-high SiO2 volcanic rocks found in several western Pacific island arcs. Their high Mg/(Mg + total Fe) (0.55-0.83) and compatible element contents (Ni = 70-450 ppm, Cr = 200-1800 ppm) indicate equilibration with mantle peridotite, but their low TiO2 contents (0.1-0.5%) indicate severe depletion of this source. K, Rb, Sr and Ba abundances in boninites are typical of primitive arc basalts, but ratios such as Ti/Zr and La/Yb are variable (Ti/Zr = 23-67, (La/Yb)e.f. = 0.6-4.7). Evidence for both enrichment and depletion of incompatible elements suggests that boninites are derived from refractory peridotite which has been metasomatically enriched in LREE, Zr, Sr, Ba and alkalis. Wide variations in 143Nd/144Nd (0.51262-0.51296) are correlated with La/Sm, Sm/Nd and Ti/Zr, which enables identification of components in the boninite source. Possible LREE depleted components have relative REE and Ti abundances like those in depleted peridotites and high 143Nd/144Nd ratios which reach MORB-like values. Possible LREE enriched components have relative REE abundances similar to those in metasomatized mantle peridotite nodules, and low 143Nd/144Nd ratios which indicate either sedimentary sources or mantle sources with recent to ancient LREE enrichment. Relative abundances of Ba and Sr in boninites decrease with increasing LREE enrichment and suggest a non-sedimentary source for the LREE enriched material. Enrichment in Ba, Sr and alkalis may result from a third component derived from subducted oceanic crust. Two models can account for the successive generation of boninites and arc tholeiites within a single area: 1) boninites can be derived from the peridotite residue of earlier arc tholeiite generation which is metasomatically enriched in LREE before boninite volcanism, or 2) arc tholeiites and boninites can be derived from a variably depleted peridotite source which has been pervasively enriched in LREE. Areas of fertile peridotite would yield tholeiites while refractory areas would yield boninites.
Resumo:
Ostracods secrete their valve calcite within a few hours or days, therefore, its isotopic composition records ambient environmental conditions of only a short time span. Hydrographic changes between the calcification of individuals lead to a corresponding range (max.-min.) in the isotope values when measuring several (>=5) single valves from a specific sediment sample. Analyses of living (stained) ostracods from the Kara Sea sediment surface revealed high ranges of >2per mil of d18O and d13C at low absolute levels (d18O: <3per mil, d13C: <-3per mil) near the river estuaries of Ob and Yenisei and low ranges of not, vert, similar1per mil at higher absolute levels (d18O: 2-5.4per mil, d13C: -3 per mil to -1.5per mil) on the shelf and in submarine paleo-river channels. Comparison with a hydrographic data base and isotope measurements of bottom water samples shows that the average and the span of the ostracod-based isotope ranges closely mirror the long-term means and variabilities (standard deviation) of bottom water temperature and salinity. The bottom hydrography in the southern part of the Kara Sea shows strong response to the river discharge and its extreme seasonal and interannual variability. Less variable hydrographic conditions are indicative for deeper shelf areas to the north, but also for areas near the river estuaries along submarine paleo-river channels, which act as corridors for southward flowing cold and saline bottom water. Isotope analyses on up to five single ostracod valves per sample in the lower section (8-7 cal. ka BP) of a sediment core north of Yenisei estuary revealed d18O and d13C values which on average are lower by 0.6? in both, d18O and d13C, than in the upper core section (<5 cal. ka BP). The isotope shifts illustrate the decreasing influence of isotopically light river water at the bottom as a result of the southward retreat of the Yenisei river mouth from the coring site due to global sea level rise. However, the ranges (max.-min.) in the single-valve d18O and d13C data of the individual core samples are similar in the upper and in the lower core section, although a higher hydrographic variability is expected prior to 7 cal. ka BP due to river proximity. This lack of variability indicates the southward flow of cold, saline water along a submarine paleo-river channel, formerly existing at the core location. Despite shallowing of the site due to sediment filling of the channel and isostatic uplift of the area, the hydrographic variability at the core location remained low during the Late Holocene, because the shallowing proceeded synchronously with the retreat of the river mouth due to the global sea level rise
Resumo:
To estimate the kinematics of the SIRGAS reference frame, the Deutsches Geodätisches Forschungsinstitut (DGFI) as the IGS Regional Network Associate Analysis Centre for SIRGAS (IGS RNNAC SIR), yearly computes a cumulative (multi-year) solution containing all available weekly solutions delivered by the SIRGAS analysis centres. These cumulative solutions include those models, standards, and strategies widely applied at the time in which they were computed and cover different time spans depending on the availability of the weekly solutions. This data set corresponds to the multi-year solution SIR11P01. It is based on the combination of the weekly normal equations covering the time span from 2000-01-02 (GPS week 1043) to 2011-04-16 (GPS week 1631), when the IGS08 reference frame was introduced. It refers to ITRF2008, epoch 2005.0 and contains 230 stations with 269 occupations. Its precision was estimated to be ±1.0 mm (horizontal) and ±2.4 mm (vertical) for the station positions, and ±0.7 mm/a (horizontal) and ±1.1 mm/a (vertical) for the constant velocities. Computation strategy and results are in detail described in Sánchez and Seitz (2011). The IGS RNAAC SIR computation of the SIRGAS reference frame is possible thanks to the active participation of many Latin American and Caribbean colleagues, who not only make the measurements of the stations available, but also operate SIRGAS analysis centres processing the observational data on a routine basis (more details in http://www.sirgas.org). The achievements of SIRGAS are a consequence of a successful international geodetic cooperation not only following and meeting concrete objectives, but also becoming a permanent and self-sustaining geodetic community to guarantee quality, reliability, and long-term stability of the SIRGAS reference frame. The SIRGAS activities are strongly supported by the International Association of Geodesy (IAG) and the Pan-American Institute for Geography and History (PAIGH). The IGS RNAAC SIR highly appreciates all this support.
Resumo:
The Late Weichselian glacial history of the continental shelf off western Spitsbergen is discussed, based on acoustic sub-bottom records and sediment cores. The outer part of Isfjorden and the inner shelf to the west of this fjord are characterized by a thin veneer (10-20 m) of glacigenic sediments and absence of ice-marginal features. Towards the outer shelf the sediment thickness increases significantly, and exceeds 500 m at the shelf edge. Possible moraine complexes were identified in this outer part. Sediment cores from the inner shelf sampled a firm diamicton, interpreted as till, beneath soft glaciomarine sediments. Radiocarbon dates on shells from the clay resting directly on the till, suggest an age of around 12,500 yrs B.P. for the base of the marine sequence. We argue that grounded ice covered the sites shortly before. In contrast to suggestions that the fjords and coast were partly ice free during the Late Weischselian, we conclude that the ice must have reached out onto the continental shelf.
Resumo:
The sensitivity of terrestrial environments to past changes in heat transport is expected to be manifested in Holocene climate proxy records on millennial to seasonal timescales. Stalagmite formation in the Okshola cave near Fauske (northern Norway) began at about 10.4 ka, soon after the valley was deglaciated. Past monitoring of the cave and surface has revealed stable modern conditions with uniform drip rates, relative humidity and temperature. Stable isotope records from two stalagmites provide time-series spanning from c. 10380 yr to AD 1997; a banded, multi-coloured stalagmite (Oks82) was formed between 10380 yr and 5050 yr, whereas a pristine, white stalagmite (FM3) covers the period from ~7500 yr to the present. The stable oxygen isotope (delta18Oc), stable carbon isotope (delta13Cc), and growth rate records are interpreted as showing i) a negative correlation between cave/surface temperature and delta18Oc, ii) a positive correlation between wetness and delta13Cc, and iii) a positive correlation between temperature and growth rate. Following this, the data from Okshola show that the Holocene was characterised by high-variability climate in the early part, low-variability climate in the middle part, and high-variability climate and shifts between two distinct modes in the late part. A total of nine Scandinavian stalagmite delta18Oc records of comparable dating precision are now available for parts or most of the Holocene. None of them show a clear Holocene thermal optimum, suggesting that they are influenced by annual mean temperature (cave temperature) rather than seasonal temperature. For the last 1000 years, delta18Oc values display a depletion-enrichment-depletion pattern commonly interpreted as reflecting the conventional view on climate development for the last millennium. Although the delta18Oc records show similar patterns and amplitudes of change, the main challenges for utilising high-latitude stalagmites as palaeoclimate archives are i) the accuracy of the age models, ii) the ambiguity of the proxy signals, and iii) calibration with monitoring data.
Resumo:
A major tipping point of Earth's history occurred during the mid-Pliocene: the onset of major Northern-Hemisphere Glaciation (NHG) and of pronounced, Quaternary-style cycles of glacial-to-interglacial climates, that contrast with more uniform climates over most of the preceding Cenozoic and continue until today (Zachos et al., 2001, doi:10.1126/science.1059412). The severe deterioration of climate occurred in three steps between 3.2 Ma (warm MIS K3) and 2.7 Ma (glacial MIS G6/4) (Lisiecki and Raymo, 2005, doi:10.1029/2004PA001071). Various models (sensu Driscoll and Haug, 1998, doi:10.1126/science.282.5388.436) and paleoceanographic records (intercalibrated using orbital age control) suggest clear linkages between the onset of NHG and the three steps in the final closure of the Central American Seaways (CAS), deduced from rising salinity differences between Caribbean and the East Pacific. Each closing event led to an enhanced North Atlantic meridional overturning circulation and this strengthened the poleward transport of salt and heat (warmings of +2-3°C) (Bartoli et al., 2005, doi:10.1016/j.epsl.2005.06.020). Also, the closing resulted in a slight rise in the poleward atmospheric moisture transport to northwestern Eurasia (Lunt et al., 2007, doi:10.1007/s00382-007-0265-6), which probably led to an enhanced precipitation and fluvial run-off, lower sea surface salinity (SSS), and an increased sea-ice cover in the Arctic Ocean, hence promoting albedo and the build-up of continental ice sheets. Most important, new evidence shows that the closing of the CAS led to greater steric height of the North Pacific and thus doubled the low-saline Arctic Throughflow from the Bering Strait to the East Greenland Current (EGC). Accordingly, Labrador Sea IODP Site 1307 displays an abrupt but irreversible EGC cooling of 6°C and freshening by ~2 psu from 3.25/3.16-3.00 Ma, right after the first but still reversible attempt of closing the CAS.
Resumo:
We present a new record of eolian dust flux to the western Subarctic North Pacific (SNP) covering the past 27000 years based on a core from the Detroit Seamount. Comparing the SNP dust record to the NGRIP ice core record shows significant differences in the amplitude of dust changes to the two regions during the last deglaciation, while the timing of abrupt changes is synchronous. If dust deposition in the SNP faithfully records its mobilization in East Asian source regions, then the difference in the relative amplitude must reflect climate-related changes in atmospheric dust transport to Greenland. Based on the synchronicity in the timing of dust changes in the SNP and Greenland, we tie abrupt deglacial transitions in the 230Th-normalized 4He flux record to corresponding transitions in the well-dated NGRIP dust flux record to provide a new chronostratigraphic technique for marine sediments from the SNP. Results from this technique are complemented by radiocarbon dating, which allows us to independently constrain radiocarbon paleoreservoir ages. We find paleoreservoir ages of 745 ± 140 yr at 11653 yr BP, 680 ± 228 yr at 14630 yr BP and 790 ± 498 yr at 23290 yr BP. Our reconstructed paleoreservoir ages are consistent with modern surface water reservoir ages in the western SNP. Good temporal synchronicity between eolian dust records from the Subantarctic Atlantic and equatorial Pacific and the ice core record from Antarctica supports the reliability of the proposed dust tuning method to be used more widely in other global ocean regions.
Resumo:
The upper Holocene marine section from a kasten core taken from the oxygen minimum zone off Karachi (Pakistan) at water depth 700 m contains continuously laminated sediments with a sedimentation rate of 1.2 mm/yr and a unique record of monsoonal climatic variability covering the past 5000 years. Our chronostratigraphy is based on varve counts verified by conventional and AMS14C dating. Individual hemipelagic varve couplets are about 0.8-1.5 mm thick, with light-colored terrigenous laminae (A) deposited mainly during the winter monsoon alternating with dark-colored laminae (B) rich in marine organic matter, coccoliths, and fish debris that reflect deposition during the high-productivity season of the late summer monsoon (August-October). Precipitation and river runoff appear to control varve thickness and turbidite frequency. We infer that precipitation decreased in the river watershed (indicated by thinning varves) after 3500-4000 yr B.P. This is about the time of increasing aridification in the Near East and Middle East, as documented by decreasing Nile River runoff data and lake-level lowstands between Turkey and northwestern India. This precipitation pattern continued until today with precipitation minima about 2200-1900 yr B.P., 1000 yr B.P., and in the late Middle Ages (700-400 yr B.P.), and precipitation maxima in the intervening periods. As documented by spectral analysis, the thickness of varve couplets responds to the average length of a 250-yr cycle, a 125-yr cycle, the Gleissberg cycle of solar activity (95 yr), and a 56-yr cycle of unknown origin. Higher frequency cycles are also present at 45, 39, 29-31, and 14 yr. The sedimentary gray-value also shows strong variability in the 55-yr band plus a 31-yr cycle. Because high-frequency cyclicity in the ENSO band (ca. 3.5 and 5 yr) is only weakly expressed, our data do not support a straightforward interaction of the Pacific ENSO with the monsoon-driven climate system of the Arabian Sea.
Resumo:
The application of radiogenic isotopes to the study of Cenozoic circulation patterns in the South Pacific Ocean has been hampered by the fact that records from only equatorial Pacific deep water have been available. We present new Pb and Nd isotope time series for two ferromanganese crusts that grew from equatorial Pacific bottom water (D137-01, 'Nova', 7219 m water depth) and southwest Pacific deep water (63KD, 'Tasman', 1700 m water depth). The crusts were dated using 10Be/9Be ratios combined with constant Co-flux dating and yield time series for the past 38 and 23 Myr, respectively. The surface Nd and Pb isotope distributions are consistent with the present-day circulation pattern, and therefore the new records are considered suitable to reconstruct Eocene through Miocene paleoceanography for the South Pacific. The isotope time series of crusts Nova and Tasman suggest that equatorial Pacific deep water and waters from the Southern Ocean supplied the dissolved trace metals to both sites over the past 38 Myr. Changes in the isotopic composition of crust Nova are interpreted to reflect development of the Antarctic Circumpolar Current and changes in Pacific deep water circulation caused by the build up of the East Antarctic Ice Sheet. The Nd isotopic composition of the shallower water site in the southwest Pacific appears to have been more sensitive to circulation changes resulting from closure of the Indonesian seaway.
Resumo:
The marine laboratories in Plymouth have sampled at two principle sites in the Western English Channel for over a century in open-shelf (station E1; 50° 02'N, 4° 22'W) and coastal (station L4; 50° 15'N, 4° 13'W) waters. These stations are seasonally stratified from late-April until September, and the variable biological response is regulated by subtle variations in temperature, light, nutrients and meteorology. Station L4 is characterized by summer nutrient depletion, although intense summer precipitation, increasing riverine input to the system, results in pulses of increased nitrate concentration and surface freshening. The winter nutrient concentrations at E1 are consistent with an open-shelf site. Both stations have a spring and autumn phytoplankton bloom; at station E1, the autumn bloom tends to dominate in terms of chlorophyll concentration. The last two decades have seen a warming of around 0.6°C per decade, and this is superimposed on several periods of warming and cooling over the past century. In general, over the Western English Channel domain, the end of the 20th century was around 0.5°C warmer than the first half of the century. The warming magnitude and trend is consistent with other stations across the north-west European Shelf and occurred during a period of reduced wind stress and increased levels of insolation (+20%); these are both correlated with the larger scale climatic forcing of the North Atlantic Oscillation.
Resumo:
The monograph presents results of deep-sea drilling in the Black Sea carried out in 1975. Detailed lithological, biostratigraphic and geochemical studies of Miocene-Holocene sediments have been carried out by specialists from institutes of the USSR Academy of Sciences, Moscow State University and other organizations. Drilling results are compared with geophysical data. Geological history of the Black Sea basin is considered as well.