976 resultados para Spectral curve shape
Resumo:
Students in higher education typically learn to use information as part of their course of study, which is intended to support ongoing academic, personal and professional growth. Informing the development of effective information literacy education, this research uses a phenomenographic approach to investigate the experiences of a teacher and students engaged in lessons focused on exploring language and gender topics by tracing and analyzing their evolution through scholarly discourse. The findings suggest that the way learners use information influences content-focused learning outcomes, and reveal how teachers may enact lessons that enable students to learn to use information in ways that foster a specific understanding of the topic they are investigating.
Resumo:
Assignments of the infrared frequencies of methyl and ethyl xanthato complexes of nickel(II) have been made with the aid of normal coordinate analyses. The assignments are discussed in relation to those in related molecules.
Resumo:
Spatial dimensionality affects the degree of confinement when an electron-hole pair is squeezed from one or more dimensions approaching the bulk exciton Bohr radius (alpha(B)) limit. The etectron-hole interaction in zero-dimensional (0D) dots, one-dimensional (1D) rods/wires, and two-dimensional (2D) wells/sheets should be enhanced by the increase in confinement dimensions in the order 0D > 1D > 2D. We report the controlled synthesis of PbS nanomateriats with 0D, 1D, and 2D forms retaining at least one dimension in the strongly confined regime far below alpha(B) (similar to 10 nm for PbS) and provide evidence through varying the exciton-phonon coupling strength that the degree of confinement is systematically weakened by the loss of confinement dimension. Geometry variations show distinguishable far-field optical polarizations, which could find useful applications in polarization-sensitive devices.
Resumo:
Uncertainties associated with the structural model and measured vibration data may lead to unreliable damage detection. In this paper, we show that geometric and measurement uncertainty cause considerable problem in damage assessment which can be alleviated by using a fuzzy logic-based approach for damage detection. Curvature damage factor (CDF) of a tapered cantilever beam are used as damage indicators. Monte Carlo simulation (MCS) is used to study the changes in the damage indicator due to uncertainty in the geometric properties of the beam. Variation in these CDF measures due to randomness in structural parameter, further contaminated with measurement noise, are used for developing and testing a fuzzy logic system (FLS). Results show that the method correctly identifies both single and multiple damages in the structure. For example, the FLS detects damage with an average accuracy of about 95 percent in a beam having geometric uncertainty of 1 percent COV and measurement noise of 10 percent in single damage scenario. For multiple damage case, the FLS identifies damages in the beam with an average accuracy of about 94 percent in the presence of above mentioned uncertainties. The paper brings together the disparate areas of probabilistic analysis and fuzzy logic to address uncertainty in structural damage detection.
Resumo:
The i.r. frequencies of ethylthioxanthate complexes of some transition metals have been interpreted on the basis of normal coordinate treatments of the 1:1 molecular models. The band assignments are disscussed in comparison with those in closely related xanthate molecules.
Resumo:
The complexes of thiophene 2-thiocarboxamide (TTCA) with some metal chlorides and bromides [M = Ni(II), Zn(II), Cd(II), Hg(II) and Cu(I)] are described. Elemental analyses, magnetic susceptibilities and conductance studies, electronic, IR, proton and 13C magnetic resonance spectra are reported. The results suggest exclusive coordination of TTCA through the thiocarbonyl sulfur. The influence of the thiophene ring on the donor properties of the thioamide are discussed.
Resumo:
An experimental study is presented to show the effect of the cowl location and shape on the shock interaction phenomena in the inlet region for a 2D, planar scramjet inlet model. Investigations include schlieren visualization around the cowl region and heat transfer rate measurement inside the inlet chamber.Both regular and Mach reflections are observed when the forebody ramp shock reflects from the cowl plate. Mach stem heights of 3.3 mm and 4.1 mm are measured in 18.5 mm and 22.7 mm high inlet chambers respecively. Increased heat transfer rate is measured at the same location of chamber for cowls of longer lenghs is indicating additional mass flow recovery by the inlet.
Resumo:
The control of shapes of nanocrystals is crucial for using them as building blocks for various applications. In this paper, we present a critical overview of the issues involved in shape-controlled synthesis of nanostructures. In particular, we focus on the mechanisms by which anisotropic structures of high-symmetry materials (fcc crystals, for instance) could be realized. Such structures require a symmetry-breaking mechanism to be operative that typically leads to selection of one of the facets/directions for growth over all the other symmetry-equivalent crystallographic facets. We show how this selection could arise for the growth of one-dimensional structures leading to ultrafine metal nanowires and for the case of two-dimensional nanostructures where the layer-by-layer growth takes place at low driving forces leading to plate-shaped structures. We illustrate morphology diagrams to predict the formation of two-dimensional structures during wet chemical synthesis. We show the generality of the method by extending it to predict the growth of plate-shaped inorganics produced by a precipitation reaction. Finally, we present the growth of crystals under high driving forces that can lead to the formation of porous structures with large surface areas.
Resumo:
Early detection of (pre-)signs of ulceration on a diabetic foot is valuable for clinical practice. Hyperspectral imaging is a promising technique for detection and classification of such (pre-)signs. However, the number of the spectral bands should be limited to avoid overfitting, which is critical for pixel classification with hyperspectral image data. The goal was to design a detector/classifier based on spectral imaging (SI) with a small number of optical bandpass filters. The performance and stability of the design were also investigated. The selection of the bandpass filters boils down to a feature selection problem. A dataset was built, containing reflectance spectra of 227 skin spots from 64 patients, measured with a spectrometer. Each skin spot was annotated manually by clinicians as "healthy" or a specific (pre-)sign of ulceration. Statistical analysis on the data set showed the number of required filters is between 3 and 7, depending on additional constraints on the filter set. The stability analysis revealed that shot noise was the most critical factor affecting the classification performance. It indicated that this impact could be avoided in future SI systems with a camera sensor whose saturation level is higher than 106, or by postimage processing.
Resumo:
In 1956 Whitham gave a nonlinear theory for computing the intensity of an acoustic pulse of an arbitrary shape. The theory has been used very successfully in computing the intensity of the sonic bang produced by a supersonic plane. [4.] derived an approximate quasi-linear equation for the propagation of a short wave in a compressible medium. These two methods are essentially nonlinear approximations of the perturbation equations of the system of gas-dynamic equations in the neighborhood of a bicharacteristic curve (or rays) for weak unsteady disturbances superimposed on a given steady solution. In this paper we have derived an approximate quasi-linear equation which is an approximation of perturbation equations in the neighborhood of a bicharacteristic curve for a weak pulse governed by a general system of first order quasi-linear partial differential equations in m + 1 independent variables (t, x1,…, xm) and derived Gubkin's result as a particular case when the system of equations consists of the equations of an unsteady motion of a compressible gas. We have also discussed the form of the approximate equation describing the waves propagating upsteam in an arbitrary multidimensional transonic flow.
Resumo:
Credence goods markets suffer from inefficiencies caused by superior information of sellers about the surplus-maximising quality. While standard theory predicts that equal mark-up prices solve the credence goods problem if customers can verify the quality received, experimental evidence indicates the opposite. We identify a lack of robustness with respect to heterogeneity in social preferences as a possible cause of this and conduct new experiments that allow for parsimonious identification of sellers’ social preference types. Our results confirm the assumed heterogeneity in social preferences and provide strong support for our explanation of the failure of verifiability to increase efficiency.
Resumo:
A generalised theory for the natural vibration of non-uniform thin-walled beams of arbitrary cross-sectional geometry is proposed. The governing equations are obtained as four partial, linear integro-differential equations. The corresponding boundary conditions are also obtained in an integro-differential form. The formulation takes into account the effect of longitudinal inertia and shear flexibility. A method of solution is presented. Some numerical illustrations and an exact solution are included.
Resumo:
Motivated by a problem from fluid mechanics, we consider a generalization of the standard curve shortening flow problem for a closed embedded plane curve such that the area enclosed by the curve is forced to decrease at a prescribed rate. Using formal asymptotic and numerical techniques, we derive possible extinction shapes as the curve contracts to a point, dependent on the rate of decreasing area; we find there is a wider class of extinction shapes than for standard curve shortening, for which initially simple closed curves are always asymptotically circular. We also provide numerical evidence that self-intersection is possible for non-convex initial conditions, distinguishing between pinch-off and coalescence of the curve interior.
Resumo:
Spectroscopic and electrochemical redox properties of a series of fluorinated porphyrins bearing donor-acceptor groups and their Zn(II) and Cu(II) derivatives are presented. The magnitude of the ring reduction potentials and charge transfer properties derived from spectral data depend on the nature and position of the substituent(s), (nitro/dimethylamino) and the central metal ions.