21 resultados para Spectral curve shape
em CaltechTHESIS
Resumo:
Theoretical and experimental studies were conducted to investigate the wave induced oscillations in an arbitrary shaped harbor with constant depth which is connected to the open-sea.
A theory termed the “arbitrary shaped harbor” theory is developed. The solution of the Helmholtz equation, ∇2f + k2f = 0, is formulated as an integral equation; an approximate method is employed to solve the integral equation by converting it to a matrix equation. The final solution is obtained by equating, at the harbor entrance, the wave amplitude and its normal derivative obtained from the solutions for the regions outside and inside the harbor.
Two special theories called the circular harbor theory and the rectangular harbor theory are also developed. The coordinates inside a circular and a rectangular harbor are separable; therefore, the solution for the region inside these harbors is obtained by the method of separation of variables. For the solution in the open-sea region, the same method is used as that employed for the arbitrary shaped harbor theory. The final solution is also obtained by a matching procedure similar to that used for the arbitrary shaped harbor theory. These two special theories provide a useful analytical check on the arbitrary shaped harbor theory.
Experiments were conducted to verify the theories in a wave basin 15 ft wide by 31 ft long with an effective system of wave energy dissipators mounted along the boundary to simulate the open-sea condition.
Four harbors were investigated theoretically and experimentally: circular harbors with a 10° opening and a 60° opening, a rectangular harbor, and a model of the East and West Basins of Long Beach Harbor located in Long Beach, California.
Theoretical solutions for these four harbors using the arbitrary shaped harbor theory were obtained. In addition, the theoretical solutions for the circular harbors and the rectangular harbor using the two special theories were also obtained. In each case, the theories have proven to agree well with the experimental data.
It is found that: (1) the resonant frequencies for a specific harbor are predicted correctly by the theory, although the amplification factors at resonance are somewhat larger than those found experimentally,(2) for the circular harbors, as the width of the harbor entrance increases, the amplification at resonance decreases, but the wave number bandwidth at resonance increases, (3) each peak in the curve of entrance velocity vs incident wave period corresponds to a distinct mode of resonant oscillation inside the harbor, thus the velocity at the harbor entrance appears to be a good indicator for resonance in harbors of complicated shape, (4) the results show that the present theory can be applied with confidence to prototype harbors with relatively uniform depth and reflective interior boundaries.
Resumo:
Some problems of edge waves and standing waves on beaches are examined.
The nonlinear interaction of a wave normally incident on a sloping beach with a subharmonic edge wave is studied. A two-timing expansion is used in the full nonlinear theory to obtain the modulation equations which describe the evolution of the waves. It is shown how large amplitude edge waves are produced; and the results of the theory are compared with some recent laboratory experiments.
Traveling edge waves are considered in two situations. First, the full linear theory is examined to find the finite depth effect on the edge waves produced by a moving pressure disturbance. In the second situation, a Stokes' expansion is used to discuss the nonlinear effects in shallow water edge waves traveling over a bottom of arbitrary shape. The results are compared with the ones of the full theory for a uniformly sloping bottom.
The finite amplitude effects for waves incident on a sloping beach, with perfect reflection, are considered. A Stokes' expansion is used in the full nonlinear theory to find the corrections to the dispersion relation for the cases of normal and oblique incidence.
Finally, an abstract formulation of the linear water waves problem is given in terms of a self adjoint but nonlocal operator. The appropriate spectral representations are developed for two particular cases.
Resumo:
In the first part of this thesis a study of the effect of the longitudinal distribution of optical intensity and electron density on the static and dynamic behavior of semiconductor lasers is performed. A static model for above threshold operation of a single mode laser, consisting of multiple active and passive sections, is developed by calculating the longitudinal optical intensity distribution and electron density distribution in a self-consistent manner. Feedback from an index and gain Bragg grating is included, as well as feedback from discrete reflections at interfaces and facets. Longitudinal spatial holeburning is analyzed by including the dependence of the gain and the refractive index on the electron density. The mechanisms of spatial holeburning in quarter wave shifted DFB lasers are analyzed. A new laser structure with a uniform optical intensity distribution is introduced and an implementation is simulated, resulting in a large reduction of the longitudinal spatial holeburning effect.
A dynamic small-signal model is then developed by including the optical intensity and electron density distribution, as well as the dependence of the grating coupling coefficients on the electron density. Expressions are derived for the intensity and frequency noise spectrum, the spontaneous emission rate into the lasing mode, the linewidth enhancement factor, and the AM and FM modulation response. Different chirp components are identified in the FM response, and a new adiabatic chirp component is discovered. This new adiabatic chirp component is caused by the nonuniform longitudinal distributions, and is found to dominate at low frequencies. Distributed feedback lasers with partial gain coupling are analyzed, and it is shown how the dependence of the grating coupling coefficients on the electron density can result in an enhancement of the differential gain with an associated enhancement in modulation bandwidth and a reduction in chirp.
In the second part, spectral characteristics of passively mode-locked two-section multiple quantum well laser coupled to an external cavity are studied. Broad-band wavelength tuning using an external grating is demonstrated for the first time in passively mode-locked semiconductor lasers. A record tuning range of 26 nm is measured, with pulse widths of typically a few picosecond and time-bandwidth products of more than 10 times the transform limit. It is then demonstrated that these large time-bandwidth products are due to a strong linear upchirp, by performing pulse compression by a factor of 15 to a record pulse widths as low 320 fs.
A model for pulse propagation through a saturable medium with self-phase-modulation, due to the a-parameter, is developed for quantum well material, including the frequency dependence of the gain medium. This model is used to simulate two-section devices coupled to an external cavity. When no self-phase-modulation is present, it is found that the pulses are asymmetric with a sharper rising edge, that the pulse tails have an exponential behavior, and that the transform limit is 0.3. Inclusion of self-phase-modulation results in a linear upchirp imprinted on the pulse after each round-trip. This linear upchirp is due to a combination of self-phase-modulation in a gain section and absorption of the leading edge of the pulse in the saturable absorber.
Resumo:
A time-domain spectrometer for use in the terahertz (THz) spectral range was designed and constructed. Due to there being few existing methods of generating and detecting THz radiation, the spectrometer is expected to have vast applications to solid, liquid, and gas phase samples. In particular, knowledge of complex organic chemistry and chemical abundances in the interstellar medium (ISM) can be obtained when compared to astronomical data. The THz spectral region is of particular interest due to reduced line density when compared to the millimeter wave spectrum, the existence of high resolution observatories, and potentially strong transitions resulting from the lowest-lying vibrational modes of large molecules.
The heart of the THz time-domain spectrometer (THz-TDS) is the ultrafast laser. Due to the femtosecond duration of ultrafast laser pulses and an energy-time uncertainty relationship, the pulses typically have a several-THz bandwidth. By various means of optical rectification, the optical pulse carrier envelope shape, i.e. intensity-time profile, can be transferred to the phase of the resulting THz pulse. As a consequence, optical pump-THz probe spectroscopy is readily achieved, as was demonstrated in studies of dye-sensitized TiO2, as discussed in chapter 4. Detection of the terahertz radiation is commonly based on electro-optic sampling and provides full phase information. This allows for accurate determination of both the real and imaginary index of refraction, the so-called optical constants, without additional analysis. A suite of amino acids and sugars, all of which have been found in meteorites, were studied in crystalline form embedded in a polyethylene matrix. As the temperature was varied between 10 and 310 K, various strong vibrational modes were found to shift in spectral intensity and frequency. Such modes can be attributed to intramolecular, intermolecular, or phonon modes, or to some combination of the three.
Resumo:
Noncommutative geometry is a source of particle physics models with matter Lagrangians coupled to gravity. One may associate to any noncommutative space (A, H, D) its spectral action, which is defined in terms of the Dirac spectrum of its Dirac operator D. When viewing a spin manifold as a noncommutative space, D is the usual Dirac operator. In this paper, we give nonperturbative computations of the spectral action for quotients of SU(2), Bieberbach manifolds, and SU(3) equipped with a variety of geometries. Along the way we will compute several Dirac spectra and refer to applications of this computation.
Resumo:
Freshwater fish of the genus Apteronotus (family Gymnotidae) generate a weak, high frequency electric field (< 100 mV/cm, 0.5-10 kHz) which permeates their local environment. These nocturnal fish are acutely sensitive to perturbations in their electric field caused by other electric fish, and nearby objects whose impedance is different from the surrounding water. This thesis presents high temporal and spatial resolution maps of the electric potential and field on and near Apteronotus. The fish's electric field is a complicated and highly stable function of space and time. Its characteristics, such as spectral composition, timing, and rate of attenuation, are examined in terms of physical constraints, and their possible functional roles in electroreception.
Temporal jitter of the periodic field is less than 1 µsec. However, electrocyte activity is not globally synchronous along the fish 's electric organ. The propagation of electrocyte activation down the fish's body produces a rotation of the electric field vector in the caudal part of the fish. This may assist the fish in identifying nonsymmetrical objects, and could also confuse electrosensory predators that try to locate Apteronotus by following its fieldlines. The propagation also results in a complex spatiotemporal pattern of the EOD potential near the fish. Visualizing the potential on the same and different fish over timescales of several months suggests that it is stable and could serve as a unique signature for individual fish.
Measurements of the electric field were used to calculate the effects of simple objects on the fish's electric field. The shape of the perturbation or "electric image" on the fish's skin is relatively independent of a simple object's size, conductivity, and rostrocaudal location, and therefore could unambiguously determine object distance. The range of electrolocation may depend on both the size of objects and their rostrocaudal location. Only objects with very large dielectric constants cause appreciable phase shifts, and these are strongly dependent on the water conductivity.
Resumo:
The study of exoplanets is rapidly evolving into an important and exciting field of its own. My investigations over the past half-decade have focused on understanding just a small sliver of what they are trying to tell us. That small sliver is their atmospheres. Atmospheres are the buffer between the bulk planet and the vacuum of space. The atmosphere is an important component of a planet as it is the most readily observable and contains the most information about the physical processes that can occur in a planet. I have focused on two aspects of exoplanetary atmospheres. First, I aimed to understand the chemical mechanisms that control the atmospheric abundances. Second, I focused on interpreting exoplanet atmospheric spectra and what they tell us about the temperatures and compositions through inverse modeling. Finally, I interpreted the retrieved temperature and abundances from inverse modeling in the context of chemical disequilibrium in the planetary atmospheres.
Resumo:
RNA interference (RNAi) is a powerful biological pathway allowing for sequence-specific knockdown of any gene of interest. While RNAi is a proven tool for probing gene function in biological circuits, it is limited by being constitutively ON and executes the logical operation: silence gene Y. To provide greater control over post-transcriptional gene silencing, we propose engineering a biological logic gate to implement “conditional RNAi.” Such a logic gate would silence gene Y only upon the expression of gene X, a completely unrelated gene, executing the logic: if gene X is transcribed, silence independent gene Y. Silencing of gene Y could be confined to a specific time and/or tissue by appropriately selecting gene X.
To implement the logic of conditional RNAi, we present the design and experimental validation of three nucleic acid self-assembly mechanisms which detect a sub-sequence of mRNA X and produce a Dicer substrate specific to gene Y. We introduce small conditional RNAs (scRNAs) to execute the signal transduction under isothermal conditions. scRNAs are small RNAs which change conformation, leading to both shape and sequence signal transduction, in response to hybridization to an input nucleic acid target. While all three conditional RNAi mechanisms execute the same logical operation, they explore various design alternatives for nucleic acid self-assembly pathways, including the use of duplex and monomer scRNAs, stable versus metastable reactants, multiple methods of nucleation, and 3-way and 4-way branch migration.
We demonstrate the isothermal execution of the conditional RNAi mechanisms in a test tube with recombinant Dicer. These mechanisms execute the logic: if mRNA X is detected, produce a Dicer substrate targeting independent mRNA Y. Only the final Dicer substrate, not the scRNA reactants or intermediates, is efficiently processed by Dicer. Additional work in human whole-cell extracts and a model tissue-culture system delves into both the promise and challenge of implementing conditional RNAi in vivo.
Resumo:
A research program was designed (1) to map regional lithological units of the lunar surface based on measurements of spatial variations in spectral reflectance, and, (2) to establish the sequence of the formation of such lithological units from measurements of the accumulated affects of impacting bodies.
Spectral reflectance data were obtained by scanning luminance variations over the lunar surface at three wavelengths (0.4µ, 0.52µ, and 0.7µ). These luminance measurements were reduced to normalized spectral reflectance values relative to a standard area in More Serenitotis. The spectral type of each lunar area was identified from the shape of its reflectance spectrum. From these data lithological units or regions of constant color were identified. The maria fall into two major spectral classes: circular moria like More Serenitotis contain S-type or red material and thin, irregular, expansive maria like Mare Tranquillitatis contain T-type or blue material. Four distinct subtypes of S-type reflectances and two of T-type reflectances exist. As these six subtypes occur in a number of lunar regions, it is concluded that they represent specific types of material rather than some homologous set of a few end members.
The relative ages or sequence of formation of these more units were established from measurements of the accumulated impacts which have occurred since more formation. A model was developed which relates the integrated flux of particles which hove impacted a surface to the distribution of craters as functions of size and shape. Erosion of craters is caused chiefly by small bodies which produce negligible individual changes in crater shape. Hence the shape of a crater can be used to estimate the total number of small impacts that have occurred since the crater was formed. Relative ages of a surface can then be obtained from measurements of the slopes of the walls of the oldest craters formed on the surface. The results show that different maria and regions within them were emplaced at different times. An approximate absolute time scale was derived from Apollo 11 crystallization ages under an assumption of a constant rote of impacting for the last 4 x 10^9 yrs. Assuming, constant flux, the period of mare formation lasted from over 4 x 10^9 yrs to about 1.5 x 10^9 yrs ago.
A synthesis of the results of relative age measurements and of spectral reflectance mapping shows that (1) the formation of the lunar maria occurred in three stages; material of only one spectral type was deposited in each stage, (2) two distinct kinds of maria exist, each type distinguished by morphology, structure, gravity anomalies, time of formation, and spectral reflectance type, and (3) individual maria have complicated histories; they contain a variety of lithic units emplaced at different times.
Resumo:
Since the discovery of D-branes as non-perturbative, dynamic objects in string theory, various configurations of branes in type IIA/B string theory and M-theory have been considered to study their low-energy dynamics described by supersymmetric quantum field theories.
One example of such a construction is based on the description of Seiberg-Witten curves of four-dimensional N = 2 supersymmetric gauge theories as branes in type IIA string theory and M-theory. This enables us to study the gauge theories in strongly-coupled regimes. Spectral networks are another tool for utilizing branes to study non-perturbative regimes of two- and four-dimensional supersymmetric theories. Using spectral networks of a Seiberg-Witten theory we can find its BPS spectrum, which is protected from quantum corrections by supersymmetry, and also the BPS spectrum of a related two-dimensional N = (2,2) theory whose (twisted) superpotential is determined by the Seiberg-Witten curve. When we don’t know the perturbative description of such a theory, its spectrum obtained via spectral networks is a useful piece of information. In this thesis we illustrate these ideas with examples of the use of Seiberg-Witten curves and spectral networks to understand various two- and four-dimensional supersymmetric theories.
First, we examine how the geometry of a Seiberg-Witten curve serves as a useful tool for identifying various limits of the parameters of the Seiberg-Witten theory, including Argyres-Seiberg duality and Argyres-Douglas fixed points. Next, we consider the low-energy limit of a two-dimensional N = (2, 2) supersymmetric theory from an M-theory brane configuration whose (twisted) superpotential is determined by the geometry of the branes. We show that, when the two-dimensional theory flows to its infra-red fixed point, particular cases realize Kazama-Suzuki coset models. We also study the BPS spectrum of an Argyres-Douglas type superconformal field theory on the Coulomb branch by using its spectral networks. We provide strong evidence of the equivalence of superconformal field theories from different string-theoretic constructions by comparing their BPS spectra.
Resumo:
Curve samplers are sampling algorithms that proceed by viewing the domain as a vector space over a finite field, and randomly picking a low-degree curve in it as the sample. Curve samplers exhibit a nice property besides the sampling property: the restriction of low-degree polynomials over the domain to the sampled curve is still low-degree. This property is often used in combination with the sampling property and has found many applications, including PCP constructions, local decoding of codes, and algebraic PRG constructions.
The randomness complexity of curve samplers is a crucial parameter for its applications. It is known that (non-explicit) curve samplers using O(log N + log(1/δ)) random bits exist, where N is the domain size and δ is the confidence error. The question of explicitly constructing randomness-efficient curve samplers was first raised in [TU06] where they obtained curve samplers with near-optimal randomness complexity.
In this thesis, we present an explicit construction of low-degree curve samplers with optimal randomness complexity (up to a constant factor) that sample curves of degree (m logq(1/δ))O(1) in Fqm. Our construction is a delicate combination of several components, including extractor machinery, limited independence, iterated sampling, and list-recoverable codes.
Resumo:
This work seeks to understand past and present surface conditions on the Moon using two different but complementary approaches: topographic analysis using high-resolution elevation data from recent spacecraft missions and forward modeling of the dominant agent of lunar surface modification, impact cratering. The first investigation focuses on global surface roughness of the Moon, using a variety of statistical parameters to explore slopes at different scales and their relation to competing geological processes. We find that highlands topography behaves as a nearly self-similar fractal system on scales of order 100 meters, and there is a distinct change in this behavior above and below approximately 1 km. Chapter 2 focuses this analysis on two localized regions: the lunar south pole, including Shackleton crater, and the large mare-filled basins on the nearside of the Moon. In particular, we find that differential slope, a statistical measure of roughness related to the curvature of a topographic profile, is extremely useful in distinguishing between geologic units. Chapter 3 introduces a numerical model that simulates a cratered terrain by emplacing features of characteristic shape geometrically, allowing for tracking of both the topography and surviving rim fragments over time. The power spectral density of cratered terrains is estimated numerically from model results and benchmarked against a 1-dimensional analytic model. The power spectral slope is observed to vary predictably with the size-frequency distribution of craters, as well as the crater shape. The final chapter employs the rim-tracking feature of the cratered terrain model to analyze the evolving size-frequency distribution of craters under different criteria for identifying "visible" craters from surviving rim fragments. A geometric bias exists that systematically over counts large or small craters, depending on the rim fraction required to count a given feature as either visible or erased.
Resumo:
From studies of protoplanetary disks to extrasolar planets and planetary debris, we aim to understand the full evolution of a planetary system. Observational constraints from ground- and space-based instrumentation allows us to measure the properties of objects near and far and are central to developing this understanding. We present here three observational campaigns that, when combined with theoretical models, reveal characteristics of different stages and remnants of planet formation. The Kuiper Belt provides evidence of chemical and dynamical activity that reveals clues to its primordial environment and subsequent evolution. Large samples of this population can only be assembled at optical wavelengths, with thermal measurements at infrared and sub-mm wavelengths currently available for only the largest and closest bodies. We measure the size and shape of one particular object precisely here, in hopes of better understanding its unique dynamical history and layered composition.
Molecular organic chemistry is one of the most fundamental and widespread facets of the universe, and plays a key role in planet formation. A host of carbon-containing molecules vibrationally emit in the near-infrared when excited by warm gas, T~1000 K. The NIRSPEC instrument at the W.M. Keck Observatory is uniquely configured to study large ranges of this wavelength region at high spectral resolution. Using this facility we present studies of warm CO gas in protoplanetary disks, with a new code for precise excitation modeling. A parameterized suite of models demonstrates the abilities of the code and matches observational constraints such as line strength and shape. We use the models to probe various disk parameters as well, which are easily extensible to others with known disk emission spectra such as water, carbon dioxide, acetylene, and hydrogen cyanide.
Lastly, the existence of molecules in extrasolar planets can also be studied with NIRSPEC and reveals a great deal about the evolution of the protoplanetary gas. The species we observe in protoplanetary disks are also often present in exoplanet atmospheres, and are abundant in Earth's atmosphere as well. Thus, a sophisticated telluric removal code is necessary to analyze these high dynamic range, high-resolution spectra. We present observations of a hot Jupiter, revealing water in its atmosphere and demonstrating a new technique for exoplanet mass determination and atmospheric characterization. We will also be applying this atmospheric removal code to the aforementioned disk observations, to improve our data analysis and probe less abundant species. Guiding models using observations is the only way to develop an accurate understanding of the timescales and processes involved. The futures of the modeling and of the observations are bright, and the end goal of realizing a unified model of planet formation will require both theory and data, from a diverse collection of sources.
Resumo:
High-resolution orbital and in situ observations acquired of the Martian surface during the past two decades provide the opportunity to study the rock record of Mars at an unprecedented level of detail. This dissertation consists of four studies whose common goal is to establish new standards for the quantitative analysis of visible and near-infrared data from the surface of Mars. Through the compilation of global image inventories, application of stratigraphic and sedimentologic statistical methods, and use of laboratory analogs, this dissertation provides insight into the history of past depositional and diagenetic processes on Mars. The first study presents a global inventory of stratified deposits observed in images from the High Resolution Image Science Experiment (HiRISE) camera on-board the Mars Reconnaissance Orbiter. This work uses the widespread coverage of high-resolution orbital images to make global-scale observations about the processes controlling sediment transport and deposition on Mars. The next chapter presents a study of bed thickness distributions in Martian sedimentary deposits, showing how statistical methods can be used to establish quantitative criteria for evaluating the depositional history of stratified deposits observed in orbital images. The third study tests the ability of spectral mixing models to obtain quantitative mineral abundances from near-infrared reflectance spectra of clay and sulfate mixtures in the laboratory for application to the analysis of orbital spectra of sedimentary deposits on Mars. The final study employs a statistical analysis of the size, shape, and distribution of nodules observed by the Mars Science Laboratory Curiosity rover team in the Sheepbed mudstone at Yellowknife Bay in Gale crater. This analysis is used to evaluate hypotheses for nodule formation and to gain insight into the diagenetic history of an ancient habitable environment on Mars.
Resumo:
Kohn-Sham density functional theory (KSDFT) is currently the main work-horse of quantum mechanical calculations in physics, chemistry, and materials science. From a mechanical engineering perspective, we are interested in studying the role of defects in the mechanical properties in materials. In real materials, defects are typically found at very small concentrations e.g., vacancies occur at parts per million, dislocation density in metals ranges from $10^{10} m^{-2}$ to $10^{15} m^{-2}$, and grain sizes vary from nanometers to micrometers in polycrystalline materials, etc. In order to model materials at realistic defect concentrations using DFT, we would need to work with system sizes beyond millions of atoms. Due to the cubic-scaling computational cost with respect to the number of atoms in conventional DFT implementations, such system sizes are unreachable. Since the early 1990s, there has been a huge interest in developing DFT implementations that have linear-scaling computational cost. A promising approach to achieving linear-scaling cost is to approximate the density matrix in KSDFT. The focus of this thesis is to provide a firm mathematical framework to study the convergence of these approximations. We reformulate the Kohn-Sham density functional theory as a nested variational problem in the density matrix, the electrostatic potential, and a field dual to the electron density. The corresponding functional is linear in the density matrix and thus amenable to spectral representation. Based on this reformulation, we introduce a new approximation scheme, called spectral binning, which does not require smoothing of the occupancy function and thus applies at arbitrarily low temperatures. We proof convergence of the approximate solutions with respect to spectral binning and with respect to an additional spatial discretization of the domain. For a standard one-dimensional benchmark problem, we present numerical experiments for which spectral binning exhibits excellent convergence characteristics and outperforms other linear-scaling methods.