968 resultados para Space Telescope Science Institute (U.S.)
Resumo:
Marketers spend considerable resources to motivate people to consume their products and services as a means of goal attainment (Bagozzi and Dholakia, 1999). Why people increase, decrease, or stop consuming some products is based largely on how well they perceive they are doing in pursuit of their goals (Carver and Scheier, 1992). Yet despite the importance for marketers in understanding how current performance influences a consumer’s future efforts, this topic has received little attention in marketing research. Goal researchers generally agree that feedback about how well or how poorly people are doing in achieving their goals affects their motivation (Bandura and Cervone, 1986; Locke and Latham, 1990). Yet there is less agreement about whether positive and negative performance feedback increases or decreases future effort (Locke and Latham, 1990). For instance, while a customer of a gym might cancel his membership after receiving negative feedback about his fitness, the same negative feedback might cause another customer to visit the gym more often to achieve better results. A similar logic can apply to many products and services from the use of cosmetics to investing in mutual funds. The present research offers managers key insights into how to engage customers and keep them motivated. Given that connecting customers with the company is a top research priority for managers (Marketing Science Institute, 2006), this article provides suggestions for performance metrics including four questions that managers can use to apply the findings.
Resumo:
Recent surveys of information technology management professionals show that understanding business domains in terms of business productivity and cost reduction potential, knowledge of different vertical industry segments and their information requirements, understanding of business processes and client-facing skills are more critical for Information Systems personnel than ever before. In an attempt to restrucuture the information systems curriculum accordingly, our view it that information systems students need to develop an appreciation for organizational work systems in order to understand the operation and significance of information systems within such work systems.
Resumo:
In this paper, we examine the use of a Kalman filter to aid in the mission planning process for autonomous gliders. Given a set of waypoints defining the planned mission and a prediction of the ocean currents from a regional ocean model, we present an approach to determine the best, constant, time interval at which the glider should surface to maintain a prescribed tracking error, and minimizing time on the ocean surface. We assume basic parameters for the execution of a given mission, and provide the results of the Kalman filter mission planning approach. These results are compared with previous executions of the given mission scenario.
Resumo:
We present an iterative hierarchical algorithm for multi-view stereo. The algorithm attempts to utilise as much contextual information as is available to compute highly accurate and robust depth maps. There are three novel aspects to the approach: 1) firstly we incrementally improve the depth fidelity as the algorithm progresses through the image pyramid; 2) secondly we show how to incorporate visual hull information (when available) to constrain depth searches; and 3) we show how to simultaneously enforce the consistency of the depth-map by continual comparison with neighbouring depth-maps. We show that this approach produces highly accurate depth-maps and, since it is essentially a local method, is both extremely fast and simple to implement.
Resumo:
Exploiting wind-energy is one possible way to ex- tend flight duration for Unmanned Arial Vehicles. Wind-energy can also be used to minimise energy consumption for a planned path. In this paper, we consider uncertain time-varying wind fields and plan a path through them. A Gaussian distribution is used to determine uncertainty in the Time-varying wind fields. We use Markov Decision Process to plan a path based upon the uncertainty of Gaussian distribution. Simulation results that compare the direct line of flight between start and target point and our planned path for energy consumption and time of travel are presented. The result is a robust path using the most visited cell while sampling the Gaussian distribution of the wind field in each cell.
Resumo:
A priority when designing control strategies for autonomous underwater vehicles is to emphasize their cost of implementation on a real vehicle. Indeed, due to the vehicles' design and the actuation modes usually under consideration for underwater plateforms the number of actuator switchings must be kept to a small value to insure feasibility and precision. This is the main objective of the algorithm presented in this paper. The theory is illustrated on two examples, one is a fully actuated underwater vehicle capable of motion in six-degrees-of freedom and one is minimally actuated with control motions in the vertical plane only.
Resumo:
Establishing a persistent presence in the ocean with an AUV to observe temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we propose a strategy that utilizes ocean model predictions to increase the autonomy and control of Lagrangian or profiling floats for precisely this purpose. An A* planner is applied to a local controllability map generated from predictions of ocean currents to compute a path between prescribed waypoints that has the highest likelihood of successful execution. The control to follow the planned path is computed by use of a model predictive controller. This controller is designed to select the best depth for the vehicle to exploit ambient currents to reach the goal waypoint. Mission constraints are employed to simulate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA USA, and show surprising results in the ability of a Lagrangian float to reach a desired location.
Resumo:
Establishing a persistent presence in the ocean with an Autonomous Underwater Vehicle capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of Lagrangian profiling floats for such extended deployments. We propose a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy to achieve general control of this minimally-actuated underwater vehicle. We extend experimentally validated techniques for utilising ocean current models to control under-actuated autonomous underwater vehicles by presenting this investigation into the application of these methods on profiling floats. With the appropriate vertical actuation, and utilising spatiotemporal variations in water speed and direction, we show that broad controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution over a given duration. The computed depth plan is generated with a model predictive controller, and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA USA, that show surprising results in the ability of a drifting vehicle to maintain a prescribed course and reach a desired location.
Resumo:
A physiological control system was developed for a rotary left ventricular assist device (LVAD) in which the target pump flow rate (LVADQ) was set as a function of left atrial pressure (LAP), mimicking the Frank-Starling mechanism. The control strategy was implemented using linear PID control and was evaluated in a pulsatile mock circulation loop using a prototyped centrifugal pump by varying pulmonary vascular resistance to alter venous return. The control strategy automatically varied pump speed (2460 to 1740 to 2700 RPM) in response to a decrease and subsequent increase in venous return. In contrast, a fixed-speed pump caused a simulated ventricular suction event during low venous return and higher ventricular volumes during high venous return. The preload sensitivity was increased from 0.011 L/min/mmHg in fixed speed mode to 0.47L/min/mmHg, a value similar to that of the native healthy heart. The sensitivity varied automatically to maintain the LAP and LVADQ within a predefined zone. This control strategy requires the implantation of a pressure sensor in the left atrium and a flow sensor around the outflow cannula of the LVAD. However, appropriate pressure sensor technology is not yet commercially available and so an alternative measure of preload such as pulsatility of pump signals should be investigated.
Resumo:
Monitoring the natural environment is increasingly important as habit degradation and climate change reduce theworld’s biodiversity.We have developed software tools and applications to assist ecologists with the collection and analysis of acoustic data at large spatial and temporal scales.One of our key objectives is automated animal call recognition, and our approach has three novel attributes. First, we work with raw environmental audio, contaminated by noise and artefacts and containing calls that vary greatly in volume depending on the animal’s proximity to the microphone. Second, initial experimentation suggested that no single recognizer could dealwith the enormous variety of calls. Therefore, we developed a toolbox of generic recognizers to extract invariant features for each call type. Third, many species are cryptic and offer little data with which to train a recognizer. Many popular machine learning methods require large volumes of training and validation data and considerable time and expertise to prepare. Consequently we adopt bootstrap techniques that can be initiated with little data and refined subsequently. In this paper, we describe our recognition tools and present results for real ecological problems.
Resumo:
Road traffic accidents can be reduced by providing early warning to drivers through wireless ad hoc networks. When a vehicle detects an event that may lead to an imminent accident, the vehicle disseminates emergency messages to alert other vehicles that may be endangered by the accident. In many existing broadcast-based dissemination schemes, emergency messages may be sent to a large number of vehicles in the area and can be propagated to only one direction. This paper presents a more efficient context aware multicast protocol that disseminates messages only to endangered vehicles that may be affected by the emergency event. The endangered vehicles can be identified by calculating the interaction among vehicles based on their motion properties. To ensure fast delivery, the dissemination follows a routing path obtained by computing a minimum delay tree. The multicast protocol uses a generalized approach that can support any arbitrary road topology. The performance of the multicast protocol is compared with existing broadcast protocols by simulating chain collision accidents on a typical highway. Simulation results show that the multicast protocol outperforms the other protocols in terms of reliability, efficiency, and latency.
Resumo:
Vehicular safety applications, such as cooperative collision warning systems, rely on beaconing to provide situational awareness that is needed to predict and therefore to avoid possible collisions. Beaconing is the continual exchange of vehicle motion-state information, such as position, speed, and heading, which enables each vehicle to track its neighboring vehicles in real time. This work presents a context-aware adaptive beaconing scheme that dynamically adapts the beaconing repetition rate based on an estimated channel load and the danger severity of the interactions among vehicles. The safety, efficiency, and scalability of the new scheme is evaluated by simulating vehicle collisions caused by inattentive drivers under various road traffic densities. Simulation results show that the new scheme is more efficient and scalable, and is able to improve safety better than the existing non-adaptive and adaptive rate schemes.
Resumo:
Physical access control systems play a central role in the protection of critical infrastructures, where both the provision of timely access and preserving the security of sensitive areas are paramount. In this paper we discuss the shortcomings of existing approaches to the administration of physical access control in complex environments. At the heart of the problem is the current dependency on human administrators to reason about the implications of the provision or the revocation of staff access to an area within these facilities. We demonstrate how utilising Building Information Models (BIMs) and the capabilities they provide, including 3D representation of a facility and path-finding can reduce possible intentional or accidental errors made by security administrators.
Resumo:
Recent efforts in mission planning for underwater vehicles have utilised predictive models to aid in navigation, optimal path planning and drive opportunistic sampling. Although these models provide information at a unprecedented resolutions and have proven to increase accuracy and effectiveness in multiple campaigns, most are deterministic in nature. Thus, predictions cannot be incorporated into probabilistic planning frameworks, nor do they provide any metric on the variance or confidence of the output variables. In this paper, we provide an initial investigation into determining the confidence of ocean model predictions based on the results of multiple field deployments of two autonomous underwater vehicles. For multiple missions conducted over a two-month period in 2011, we compare actual vehicle executions to simulations of the same missions through the Regional Ocean Modeling System in an ocean region off the coast of southern California. This comparison provides a qualitative analysis of the current velocity predictions for areas within the selected deployment region. Ultimately, we present a spatial heat-map of the correlation between the ocean model predictions and the actual mission executions. Knowing where the model provides unreliable predictions can be incorporated into planners to increase the utility and application of the deterministic estimations.
Resumo:
Exploiting wind-energy is one possible way to extend flight duration for Unmanned Arial Vehicles. Wind-energy can also be used to minimise energy consumption for a planned path. In this paper, we consider uncertain time-varying wind fields and plan a path through them. A Gaussian distribution is used to determine uncertainty in the Time-varying wind fields. We use Markov Decision Process to plan a path based upon the uncertainty of Gaussian distribution. Simulation results that compare the direct line of flight between start and target point and our planned path for energy consumption and time of travel are presented. The result is a robust path using the most visited cell while sampling the Gaussian distribution of the wind field in each cell.