902 resultados para Solar cell technology
Resumo:
South’s Africa’s position as global platinum supplier provides a unique opportunity for an emergent fuel cell industry. The innovative technology’s reliance on platinum has sparked interest in the mining sector, promoting the clean energy-producing devices in their own operations. This research focuses upon contemporary structures of racial oppression within the industry, to analyse how these dynamics influence the development and implementation of innovative technology. It also challenges the sustainability discourse associated with fuel cell technology in South Africa. The study follows a qualitative research approach, incorporating a political ecology focus to highlight the politicized nature of these interactions. The methodology incorporates a literature review, key informant interviews, fieldwork observations and document analysis. Findings indicate that the implementation of fuel cell technology in South Africa’s platinum mines will disproportionately burden historically disadvantaged South Africans, with the lack in technical knowledge-base considered a major challenge. Additionally, it was found that sustainability claims surrounding fuel cell technology are largely based on environmental characteristics. This has resulted in an oversimplification and a depoliticised account of the impacts of the technology. This study looked critically at the convergence of history and innovation, placing emphasis on context, power relations and knowledge to provide a more holistic account of the research problem. Opportunities exist for making a meaningful and viable contribution towards development and sustainability by means of investing in a South African fuel cell industry. The challenge will be in deliberately seeking pathways which address the more complex components of sustainability, benefitting all stakeholders and paying particular attention to the historical, political and social contexts from which the technology emerges. It is this particular context which allows for a questioning and perhaps even a re-evaluation of the sustainability narratives broadly applied to fuel cell technology.
Resumo:
Mobile network coverage is traditionally provided by outdoor macro base stations, which have a long range and serve several of customers. Due to modern passive houses and tightening construction legislation, mobile network service is deteriorated in many indoor locations. Typically, solutions for indoor coverage problem are expensive and demand actions from the mobile operator. Due to these, superior solutions are constantly researched. The solution presented in this thesis is based on Small Cell technology. Small Cells are low power access nodes designed to provide voice and data services.. This thesis concentrates on a specific Small Cell solution, which is called a Pico Cell. The problem regarding Pico Cells and Small Cells in general is that they are a new technological solution for the mobile operator, and the possible problem sources and incidents are not properly mapped. The purpose of this thesis is to figure out the possible problems in the Pico Cell deployment and how they could be solved within the operator’s incident management process. The research in the thesis is carried out with a literature research and a case study. The possible problems are investigated through lab testing. Pico Cell automated deployment process was tested in the lab environment and its proper functionality is confirmed. The related network elements were also tested and examined, and the emerged problems are resolvable. Operators existing incident management process can be used for Pico Cell troubleshooting with minor updates. Certain pre-requirements have to be met before Pico Cell deployment can be considered. The main contribution of this thesis is the Pico Cell integrated incident management process. The presented solution works in theory and solves the problems found during the lab testing. The limitations in the customer service level were solved by adding the necessary tools and by designing a working question pattern. Process structures for automated network discovery and pico specific radio parameter planning were also added for the mobile network management layer..
Resumo:
Our work focuses on experimental and theoretical studies aimed at establishing a fundamental understanding of the principal electrical and optical processes governing the operation of quantum dot solar cells (QDSC) and their feasibility for the realization of intermediate band solar cell (IBSC). Uniform performance QD solar cells with high conversion efficiency have been fabricated using carefully calibrated process recipes as the basis of all reliable experimental characterization. The origin for the enhancement of the short circuit current density (Jsc) in QD solar cells was carefully investigated. External quantum efficiency (EQE) measurements were performed as a measure of the below bandgap distribution of transition states. In this work, we found that the incorporation of self-assembled quantum dots (QDs) interrupts the lattice periodicity and introduce a greatly broadened tailing density of states extending from the bandedge towards mid-gap. A below-bandgap density of states (DOS) model with an extended Urbach tail has been developed. In particular, the below-bandgap photocurrent generation has been attributed to transitions via confined energy states and background continuum tailing states. Photoluminescence measurement is used to measure the energy level of the lowest available state and the coupling effect between QD states and background tailing states because it results from a non-equilibrium process. A basic I-V measurement reveals a degradation of the open circuit voltage (Voc) of QD solar cells, which is related to a one sub-bandgap photon absorption process followed by a direct collection of the generated carriers by the external circuit. We have proposed a modified Shockley-Queisser (SQ) model that predicts the degradation of Voc compared with a reference bulk device. Whenever an energy state within the forbidden gap can facilitate additional absorption, it can facilitate recombination as well. If the recombination is non-radiative, it is detrimental to solar cell performance. We have also investigated the QD trapping effects as deep level energy states. Without an efficient carrier extraction pathway, the QDs can indeed function as mobile carriers traps. Since hole energy levels are mostly connected with hole collection under room temperature, the trapping effect is more severe for electrons. We have tried to electron-dope the QDs to exert a repulsive Coulomb force to help improve the carrier collection efficiency. We have experimentally observed a 30% improvement of Jsc for 4e/dot devices compared with 0e/dot devices. Electron-doping helps with better carrier collection efficiency, however, we have also measured a smaller transition probability from valance band to QD states as a direct manifestation of the Pauli Exclusion Principle. The non-linear performance is of particular interest. With the availability of laser with on-resonance and off-resonance excitation energy, we have explored the photocurrent enhancement by a sequential two-photon absorption (2PA) process via the intermediate states. For the first time, we are able to distinguish the nonlinearity effect by 1PA and 2PA process. The observed 2PA current under off-resonant and on-resonant excitation comes from a two-step transition via the tailing states instead of the QD states. However, given the existence of an extended Urbach tail and the small number of photons available for the intermediate states to conduction band transition, the experimental results suggest that with the current material system, the intensity requirement for an observable enhancement of photocurrent via a 2PA process is much higher than what is available from concentrated sun light. In order to realize the IBSC model, a matching transition strength needs to be achieved between valance band to QD states and QD states to conduction band. However, we have experimentally shown that only a negligible amount of signal can be observed at cryogenic temperature via the transition from QD states to conduction band under a broadband IR source excitation. Based on the understanding we have achieved, we found that the existence of the extended tailing density of states together with the large mismatch of the transition strength from VB to QD and from QD to CB, has systematically put into question the feasibility of the IBSC model with QDs.
Resumo:
Flapping Wing Aerial Vehicles (FWAVs) have the capability to combine the benefits of both fixed wing vehicles and rotary vehicles. However, flight time is limited due to limited on-board energy storage capacity. For most Unmanned Aerial Vehicle (UAV) operators, frequent recharging of the batteries is not ideal due to lack of nearby electrical outlets. This imposes serious limitations on FWAV flights. The approach taken to extend the flight time of UAVs was to integrate photovoltaic solar cells onto different structures of the vehicle to harvest and use energy from the sun. Integration of the solar cells can greatly improve the energy capacity of an UAV; however, this integration does effect the performance of the UAV and especially FWAVs. The integration of solar cells affects the ability of the vehicle to produce the aerodynamic forces necessary to maintain flight. This PhD dissertation characterizes the effects of solar cell integration on the performance of a FWAV. Robo Raven, a recently developed FWAV, is used as the platform for this work. An additive manufacturing technique was developed to integrate photovoltaic solar cells into the wing and tail structures of the vehicle. An approach to characterizing the effects of solar cell integration to the wings, tail, and body of the UAV is also described. This approach includes measurement of aerodynamic forces generated by the vehicle and measurements of the wing shape during the flapping cycle using Digital Image Correlation. Various changes to wing, body, and tail design are investigated and changes in performance for each design are measured. The electrical performance from the solar cells is also characterized. A new multifunctional performance model was formulated that describes how integration of solar cells influences the flight performance. Aerodynamic models were developed to describe effects of solar cell integration force production and performance of the FWAV. Thus, performance changes can be predicted depending on changes in design. Sensing capabilities of the solar cells were also discovered and correlated to the deformation of the wing. This demonstrated that the solar cells were capable of: (1) Lightweight and flexible structure to generate aerodynamic forces, (2) Energy harvesting to extend operational time and autonomy, (3) Sensing of an aerodynamic force associated with wing deformation. Finally, different flexible photovoltaic materials with higher efficiencies are investigated, which enable the multifunctional wings to provide enough solar power to keep the FWAV aloft without batteries as long as there is enough sunlight to power the vehicle.
Resumo:
In order to power our planet for the next century, clean energy technologies need to be developed and deployed. Photovoltaic solar cells, which convert sunlight into electricity, are a clear option; however, they currently supply 0.1% of the US electricity due to the relatively high cost per Watt of generation. Thus, our goal is to create more power from a photovoltaic device, while simultaneously reducing its price. To accomplish this goal, we are creating new high efficiency anti-reflection coatings that allow more of the incident sunlight to be converted to electricity, using simple and inexpensive coating techniques that enable reduced manufacturing costs. Traditional anti-reflection coatings (consisting of thin layers of non-absorbing materials) rely on the destructive interference of the reflected light, causing more light to enter the device and subsequently get absorbed. While these coatings are used on nearly all commercial cells, they are wavelength dependent and are deposited using expensive processes that require elevated temperatures, which increase production cost and can be detrimental to some temperature sensitive solar cell materials. We are developing two new classes of anti-reflection coatings (ARCs) based on textured dielectric materials: (i) a transparent, flexible paper technology that relies on optical scattering and reduced refractive index contrast between the air and semiconductor and (ii) silicon dioxide (SiO2) nanosphere arrays that rely on collective optical resonances. Both techniques improve solar cell absorption and ultimately yield high efficiency, low cost devices. For the transparent paper-based ARCs, we have recently shown that they improve solar cell efficiencies for all angles of incident illumination reducing the need for costly tracking of the sun’s position. For a GaAs solar cell, we achieved a 24% improvement in the power conversion efficiency using this simple coating. Because the transparent paper is made from an earth abundant material (wood pulp) using an easy, inexpensive and scalable process, this type of ARC is an excellent candidate for future solar technologies. The coatings based on arrays of dielectric nanospheres also show excellent potential for inexpensive, high efficiency solar cells. The fabrication process is based on a Meyer rod rolling technique, which can be performed at room-temperature and applied to mass production, yielding a scalable and inexpensive manufacturing process. The deposited monolayer of SiO2 nanospheres, having a diameter of 500 nm on a bare Si wafer, leads to a significant increase in light absorption and a higher expected current density based on initial simulations, on the order of 15-20%. With application on a Si solar cell containing a traditional anti-reflection coating (Si3N4 thin-film), an additional increase in the spectral current density is observed, 5% beyond what a typical commercial device would achieve. Due to the coupling between the spheres originated from Whispering Gallery Modes (WGMs) inside each nanosphere, the incident light is strongly coupled into the high-index absorbing material, leading to increased light absorption. Furthermore, the SiO2 nanospheres scatter and diffract light in such a way that both the optical and electrical properties of the device have little dependence on incident angle, eliminating the need for solar tracking. Because the layer can be made with an easy, inexpensive, and scalable process, this anti-reflection coating is also an excellent candidate for replacing conventional technologies relying on complicated and expensive processes.
Resumo:
Solution-grown colloidal nanocrystal (NC) materials represent ideal candidates for optoelectronic devices, due to the flexibility with which they can be synthesized, the ease with which they can be processed for devicefabrication purposes and, foremost, for their excellent and size-dependent tunable optical properties, such as high photoluminescence (PL) quantum yield, color purity, and broad absorption spectra up to the near infrared. The advent of surfactant-assisted synthesis of thermodynamically stable colloidal solutions of NCs has led to peerless results in terms of uniform size distribution, composition, rational shape-design and the possibility of building heterostructured NCs (HNCs) comprising two or more different materials joined together. By tailoring the composition, shape and size of each component, HNCs with gradually higher levels of complexity have been conceived and realized, which are endowed with outstanding characteristics and optoelectronic properties. In this review, we discuss recent advances in the design of HNCs for efficient light-emitting diodes (LEDs) and photovoltaic (PV) solar cell devices. In particular, we will focus on the materials required to obtain superior optoelectronic quality and efficient devices, as well as their preparation and processing potential and limitations
Resumo:
Research in solar energy conversion and the associated photoactive materials has attracted continuous interest. Due to its proper electronic band structure, high quantum efficiency, and photonic and chemical innerness, TiO2 has been demonstrated as a versatile oxide semiconductor capable of efficiently utilizing sunlight to produce electrical and chemical energy. Its outstanding physicochemical performances have led to an array of advanced photocatalytic and photoelectrochemical applications including environmental photocatalysis, dye/semiconductor-sensitized solar cell, and solar fuel productions.
Resumo:
We have deposited intrinsic amorphous silicon (a-Si:H) using the electron cyclotron resonance (ECR) chemical vapor deposition technique in order to analyze the a-Si:H/c-Si heterointerface and assess the possible application in heterojunction with intrinsic thin layer (HIT) solar cells. Physical characterization of the deposited films shows that the hydrogen content is in the 15-30% range, depending on deposition temperature. The optical bandgap value is always comprised within the range 1.9- 2.2 eV. Minority carrier lifetime measurements performed on the heterostructures reach high values up to 1.3 ms, indicating a well-passivated a-Si:H/c-Si heterointerface for deposition temperatures as low as 100°C. In addition, we prove that the metal-oxide- semiconductor conductance method to obtain interface trap distribution can be applied to the a-Si:H/c-Si heterointerface, since the intrinsic a-Si:H layer behaves as an insulator at low or negative bias. Values for the minimum of D_it as low as 8 × 10^10 cm^2 · eV^-1 were obtained for our samples, pointing to good surface passivation properties of ECR-deposited a-Si:H for HIT solar cell applications.
Resumo:
Many different photovoltaic technologies are being developed for large-scale solar energy conversion such as crystalline silicon solar cells, thin film solar cells based on a-Si:H, CIGS and CdTe. As the demand for photovoltaics rapidly increases, there is a pressing need for the identification of new visible light absorbing materials for thin-film solar cells. Nowadays there are a wide range of earth-abundant absorber materials that have been studied around the world by different research groups. The current thin film photovoltaic market is dominated by technologies based on the use of CdTe and CIGS, these solar cells have been made with laboratory efficiencies up to 19.6% and 20.8% respectively. However, the scarcity and high cost of In, Ga and Te can limit in the long-term the production in large scale of photovoltaic devices. On the other hand, quaternary CZTSSe which contain abundant and inexpensive elements like Cu, Zn, Sn, S and Se has been a potential candidate for PV technology having solar cell efficiency up to 12.6%, however, there are still some challenges that must be accomplished for this material. Therefore, it is evident the need to find the alternative inexpensive and earth abundant materials for thin film solar cells. One of these alternatives is copper antimony sulfide(CuSbS2) which contains abundant and non-toxic elements which has a direct optical band gap of 1.5 eV, the optimum value for an absorber material in solar cells, suggesting this material as one among the new photovoltaic materials. This thesis work focuses on the preparation and characterization of In6Se7, CuSbS2 and CuSb(S1-xSex)2 thin films for their application as absorber material in photovoltaic structures using two stage process by the combination of chemical bath deposition and thermal evaporation.
Resumo:
The text presented below analyses the variation of the performance of a parabolic trough solar collector, when some of the parameters that govern its operation vary due to dirty mirror, degradation etc. In order to reach that point, it will be seen how the human has made use of solar energy with different purposes, through history until it has been reached the point where solar technology has the widespread use and in such a variety of technologies as it has today. As in this project, the technology analysed is the solar collectors, it is going to make more emphasis on solar thermal technology. They will be explained in detail how the parabolic trough collectors are, analysing from its different components, to its thermal performance. Once acquainted with this technology, it will be seen which tests will be carried out. Finally it is going to be explained how the model, used for the simulation and implementation of the relevant tests, has been developed. It will also be explained how the model has been validated, for once validated, proceed to the sensitivity analysis of the collectors.
Resumo:
The electrical and optical coupling between subcells in a multijunction solar cell affects its external quantum efficiency (EQE) measurement. In this study, we show how a low breakdown voltage of a component subcell impacts the EQE determination of a multijunction solar cell and demands the use of a finely adjusted external voltage bias. The optimum voltage bias for the EQE measurement of a Ge subcell in two different GaInP/GaInAs/Ge triple-junction solar cells is determined both by sweeping the external voltage bias and by tracing the I–V curve under the same light bias conditions applied during the EQE measurement. It is shown that the I–V curve gives rapid and valuable information about the adequate light and voltage bias needed, and also helps to detect problems associated with non-ideal I–V curves that might affect the EQE measurement. The results also show that, if a non-optimum voltage bias is applied, a measurement artifact can result. Only when the problems associated with a non-ideal I–V curve and/or a low breakdown voltage have been discarded, the measurement artifacts, if any, can be attributed to other effects such as luminescent coupling between subcells.
Resumo:
Thesis (Master, Environmental Studies) -- Queen's University, 2016-09-09 11:52:31.446
Resumo:
Se presentan las propiedades eléctricas del compuesto Cu3BiS3 depositado por co-evaporación. Este es un nuevo compuesto que puede tener propiedades adecuadas para ser utilizado como capa absorbente en celdas solares. Las muestras fueron caracterizadas a través de medidas de efecto Hall y fotovoltaje superficial transiente (SPV). A través de medidas de efecto Hall se encontró que la concentración de portadores de carga n es del orden de 1016 cm-3 independiente de la relación de masas de Cu/Bi. También se encontró que la movilidad de este compuesto (μ del orden de 4 cm2V -1s-1) varía de acuerdo con los mecanismos de transporte que la gobiernan en dependencia con la temperatura. A partir de las medidas de SPV se encontró alta densidad de defectos superficiales, defectos que son pasivados al superponer una capa buffer sobre el compuesto Cu3BiS3.
Resumo:
The indoline dyes D102, D131, D149, and D205 have been characterized when adsorved on fluorine-doped tin oxide (FTO) and TiO2 electrode surfaces. Adsorption from 50:50 acetonitrile - tert-butanol onto flourine-doped tin oxide (FTO) allows approximate Langmuirian binding constants of 6.5 x 10(4), 2.01 x 10(3), 2.0 x 10(4), and 1.5 x 10(4) mol-1 dm3, respectively, to be determined. Voltammetric data obtained in acetonitrile/0.1 M NBu4PF6 indicate reversible on-electron oxidation at Emid = 0.94, 0.91, 0.88, and 0.88 V vs Ag/AgCI(3 M KCI), respectively, with dye aggregation (at high coverage) causing additional peak features at more positive potentials. Slow chemical degradation processes and electron transfer catalysis for iodine oxidation were observed for all four oxidezed indolinium cations. When adsorbed onto TiO2 nanoparticle films (ca. 9nm particle diameter and ca.3/um thickness of FTO0, reversible voltammetric responses with Emid = 1.08, 1.156, 0.92 and 0.95 V vs Ag/AgCI(3 M KCI), respectively, suggest exceptionally fast hole hopping diffusion (with Dapp > 5 x 10(-9) m2 s-1) for adsorbed layers of four indoline dyes, presumably due to pie-pie stacking in surface aggregates. Slow dye degradation is shown to affect charge transport via electron hopping. Spectrelectrochemical data for the adsorbed indoline dyes on FTO-TiO2 revealed a red-shift of absorption peaks after oxidation and the presence of a strong charge transfer band in the near-IR region. The implications of the indoline dye reactivity and fast hole mobility for solar cell devices are discussed.
Resumo:
This paper draws on a major study the authors conducted for the Australian Government in 2009. It focuses on the diffusion issues surrounding the uptake of sustainable building and construction products in Australia. Innovative sustainable products can minimise the environmental impact during construction, while maximising asset performance, durability and re-use. However, there are significant challenges faced by designers and clients in the selection of appropriate sustainable products in consideration of the integrated design solution, including overall energy efficiency, water conservation, maintenance and durability, low-impact use and consumption. The paper is a review of the current state of sustainable energy and material product innovations in Australia. It examines the system dynamics surrounding these innovations as well as the drivers and obstacles to their diffusion throughout the Australian construction industry. The case product types reviewed comprise: solar energy technology, small wind turbines, advanced concrete technology, and warm-mixed asphalt. The conclusions highlight the important role played by Australian governments in facilitating improved adoption rates. This applies to governments in their various roles, but particularly as clients/owners, regulators, and investors in education, training, research and development. In their role as clients/owners, the paper suggests that government can better facilitate innovation within the construction industry by adjusting specification policies to encourage the uptake of sustainable products. In the role as regulators, findings suggest governments should be encouraging the application of innovative finance options and positive end-user incentives to promote sustainable product uptake. Also, further education for project-based firms and the client/end users about the long-term financial and environmental benefits of innovative sustainable products is required. As more of the economy’s resources are diverted away from business-as-usual and into the use of sustainable products, some project-based firms may face short-term financial pain in re-shaping their businesses. Government policy initiatives can encourage firms make the necessary adjustments to improve innovative sustainable product diffusion throughout the industry.