953 resultados para SEMICONDUCTOR-LASER
Resumo:
We propose a simple approach to generate a high quality 10 GHz 1.9 ps optical pulse train using a semiconductor optical amplifier and silica-based highly nonlinear fiber. An optical pulse generator based on our proposed scheme is easy to set up with commercially available optical components. A 10 GHz, 1.9 ps optical pulse train is obtained with timing jitter as low as 60 fs over the frequency range 10 Hz-1 MHz. With a wavelength tunable CW laser, a wide wavelength tunable span can be achieved over the entire C band. The proposed optical pulse generator also can operate at different repetition rates from 3 to 10 GHz.
Resumo:
We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 mu m wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice.
Resumo:
An experimental setup and the procedure for the laser resonant ionization mass spectrometry (RIMS) have been described. Both an optical spectrum and a mass spectum have been shown. The detection limit that can be reached by using this procedure has been estimated.
Resumo:
Semiconductor nanowires are pseudo 1-D structures where the magnitude of the semiconducting material is confined to a length of less than 100 nm in two dimensions. Semiconductor nanowires have a vast range of potential applications, including electronic (logic devices, diodes), photonic (laser, photodetector), biological (sensors, drug delivery), energy (batteries, solar cells, thermoelectric generators), and magnetic (spintronic, memory) devices. Semiconductor nanowires can be fabricated by a range of methods which can be categorised into one of two paradigms, bottom-up or top-down. Bottom-up processes can be defined as those where structures are assembled from their sub-components in an additive fashion. Top-down fabrication strategies use sculpting or etching to carve structures from a larger piece of material in a subtractive fashion. This seminar will detail a number of novel routes to fabricate semiconductor nanowires by both bottom-up and top-down paradigms. Firstly, a novel bottom-up route to fabricate Ge nanowires with controlled diameter distributions in the sub-20 nm regime will be described. This route details nanowire synthesis and diameter control in the absence of a foreign seed metal catalyst. Additionally a top-down route to nanowire array fabrication will be detailed outlining the importance of surface chemistry in high-resolution electron beam lithography (EBL) using hydrogen silsesquioxane (HSQ) on Ge and Bi2Se3 surfaces. Finally, a process will be described for the directed self-assembly of a diblock copolymer (PS-b-PDMS) using an EBL defined template. This section will also detail a route toward selective template sidewall wetting of either block in the PS-b-PDMS system, through tailored functionalisation of the template and substrate surfaces.
Resumo:
Mode-locked semiconductor lasers are compact pulsed sources with ultra-narrow pulse widths and high repetition-rates. In order to use these sources in real applications, their performance needs to be optimised in several aspects, usually by external control. We experimentally investigate the behaviour of recently-developed quantum-dash mode-locked lasers (QDMLLs) emitting at 1.55 μm under external optical injection. Single-section and two-section lasers with different repetition frequencies and active-region structures are studied. Particularly, we are interested in a regime which the laser remains mode-locked and the individual modes are simultaneously phase-locked to the external laser. Injection-locked self-mode-locked lasers demonstrate tunable microwave generation at first or second harmonic of the free-running repetition frequency with sub-MHz RF linewidth. For two-section mode-locked lasers, using dual-mode optical injection (injection of two coherent CW lines), narrowing the RF linewidth close to that of the electrical source, narrowing the optical linewidths and reduction in the time-bandwidth product is achieved. Under optimised bias conditions of the slave laser, a repetition frequency tuning ratio >2% is achieved, a record for a monolithic semiconductor mode-locked laser. In addition, we demonstrate a novel all-optical stabilisation technique for mode-locked semiconductor lasers by combination of CW optical injection and optical feedback to simultaneously improve the time-bandwidth product and timing-jitter of the laser. This scheme does not need an RF source and no optical to electrical conversion is required and thus is ideal for photonic integration. Finally, an application of injection-locked mode-locked lasers is introduced in a multichannel phase-sensitive amplifier (PSA). We show that with dual-mode injection-locking, simultaneous phase-synchronisation of two channels to local pump sources is realised through one injection-locking stage. An experimental proof of concept is demonstrated for two 10 Gbps phase-encoded (DPSK) channels showing more than 7 dB phase-sensitive gain and less than 1 dB penalty of the receiver sensitivity.
Resumo:
One effective approach is to destroy industrial waste and pollution is the use of a semiconductor photocatalysis system. To date such, photocatalysis systems have employed conventional linear light sources. Initial results from a study of a photocatalysis system incorporating a tripled Nd:YAG laser are reported. The laser light not only played a roll as a light source for activating the photocatalyst(TiO2), but also destroyed the organic species directly via a photochemical process. The reaction intermediates and changes in their concentrations are monitored using HPLC. The relationship between the power of laser and kinetics of photoreaction are discussed.
Resumo:
Nesta tese investigam-se e desenvolvem-se dispositivos para processamento integralmente óptico em redes com multiplexagem densa por divisão no comprimento de onda (DWDM). O principal objectivo das redes DWDM é transportar e distribuir um espectro óptico densamente multiplexado com sinais de débito binário ultra elevado, ao longo de centenas ou milhares de quilómetros de fibra óptica. Estes sinais devem ser transportados e encaminhados no domínio óptico de forma transparente, sem conversões óptico-eléctrico-ópticas (OEO), evitando as suas limitações e custos. A tecnologia baseada em amplificadores ópticos de semicondutor (SOA) é promissora graças aos seus efeitos não-lineares ultra-rápidos e eficientes, ao potencial para integração, reduzido consumo de potência e custos. Conversores de comprimento de onda são o elemento óptico básico para aumentar a capacidade da rede e evitar o bloqueio de comprimentos de onda. Neste trabalho, são estudados e analisados experimentalmente métodos para aumentar a largura de banda operacional de conversores de modulação cruzada de ganho (XGM), a fim de permitir a operação do SOA para além das suas limitações físicas. Conversão de um comprimento de onda, e conversão simultânea de múltiplos comprimentos de onda são testadas, usando interferómetros de Mach-Zehnder com SOA. As redes DWDM de alto débito binário requerem formatos de modulação optimizados, com elevada tolerância aos efeitos nefastos da fibra, e reduzida ocupação espectral. Para esse efeito, é vital desenvolver conversores integramente ópticos de formatos de modulação, a fim de permitir a interligação entre as redes já instaladas, que operam com modulação de intensidade, e as redes modernas, que utilizam formatos de modulação avançados. No âmbito deste trabalho é proposto um conversor integralmente óptico de formato entre modulação óptica de banda lateral dupla e modulação óptica de banda lateral residual; este é caracterizado através de simulação e experimentalmente. Adicionalmente, é proposto um conversor para formato de portadora suprimida, através de XGM e modulação cruzada de fase. A interligação entre as redes de transporte com débito binário ultra-elevado e as redes de acesso com débito binário reduzido requer conversão óptica de formato de impulso entre retorno-a-zero (RZ) e não-RZ. São aqui propostas e investigadas duas estruturas distintas: uma baseada em filtragem desalinhada do sinal convertido por XGM; uma segunda utiliza as dinâmicas do laser interno de um SOA com ganho limitado (GC-SOA). Regeneração integralmente óptica é essencial para reduzir os custos das redes. Dois esquemas distintos são utilizados para regeneração: uma estrutura baseada em MZI-SOA, e um método no qual o laser interno de um GC-SOA é modulado com o sinal distorcido a regenerar. A maioria dos esquemas referidos é testada experimentalmente a 40 Gb/s, com potencial para aplicação a débitos binários superiores, demonstrado que os SOA são uma tecnologia basilar para as redes ópticas do futuro.
Resumo:
Transparent conducting oxides (TCO’s) have been known and used for technologically important applications for more than 50 years. The oxide materials such as In2O3, SnO2 and impurity doped SnO2: Sb, SnO2: F and In2O3: Sn (indium tin oxide) were primarily used as TCO’s. Indium based oxides had been widely used as TCO’s for the past few decades. But the current increase in the cost of indium and scarcity of this material created the difficulty in obtaining low cost TCO’s. Hence the search for alternative TCO material has been a topic of active research for the last few decades. This resulted in the development of various binary and ternary compounds. But the advantages of using binary oxides are the easiness to control the composition and deposition parameters. ZnO has been identified as the one of the promising candidate for transparent electronic applications owing to its exciting optoelectronic properties. Some optoelectronics applications of ZnO overlap with that of GaN, another wide band gap semiconductor which is widely used for the production of green, blue-violet and white light emitting devices. However ZnO has some advantages over GaN among which are the availability of fairly high quality ZnO bulk single crystals and large excitonic binding energy. ZnO also has much simpler crystal-growth technology, resulting in a potentially lower cost for ZnO based devices. Most of the TCO’s are n-type semiconductors and are utilized as transparent electrodes in variety of commercial applications such as photovoltaics, electrochromic windows, flat panel displays. TCO’s provide a great potential for realizing diverse range of active functions, novel functions can be integrated into the materials according to the requirement. However the application of TCO’s has been restricted to transparent electrodes, ii notwithstanding the fact that TCO’s are n-type semiconductors. The basic reason is the lack of p-type TCO, many of the active functions in semiconductor originate from the nature of pn-junction. In 1997, H. Kawazoe et al reported the CuAlO2 as the first p-type TCO along with the chemical design concept for the exploration of other p-type TCO’s. This has led to the fabrication of all transparent diode and transistors. Fabrication of nanostructures of TCO has been a focus of an ever-increasing number of researchers world wide, mainly due to their unique optical and electronic properties which makes them ideal for a wide spectrum of applications ranging from flexible displays, quantum well lasers to in vivo biological imaging and therapeutic agents. ZnO is a highly multifunctional material system with highly promising application potential for UV light emitting diodes, diode lasers, sensors, etc. ZnO nanocrystals and nanorods doped with transition metal impurities have also attracted great interest, recently, for their spin-electronic applications This thesis summarizes the results on the growth and characterization of ZnO based diodes and nanostructures by pulsed laser ablation. Various ZnO based heterojunction diodes have been fabricated using pulsed laser deposition (PLD) and their electrical characteristics were interpreted using existing models. Pulsed laser ablation has been employed to fabricate ZnO quantum dots, ZnO nanorods and ZnMgO/ZnO multiple quantum well structures with the aim of studying the luminescent properties.
Resumo:
Chaos is a subject oftopical interest and, studied in great detail in relation to its relevance in almost all branches of science, which include physical, chemical, and biological fields. Chaos in the literal sense signifies utter confusion, but the scientific community has differentiated chaos as deterministic chaos and white noise. Deterministic chaos implies the complex behaviour of systems, which are governed by deterministic laws. Behaviour of such systems often become unpredictable in the long run. This unpredictability arises from the sensitivity of the system to its initial conditions. The essential requirement for ‘sensitivity to initial condition’ is nonlinearity of the system. The only method for determining the future of such systems is numerically simulating its final state from a set ofinitial conditions. Synchronisation
Resumo:
Nonlinear optics has been a rapidly growing field in recent decades since the invention of lasers. The systematic progress in the laser technology increases our efficiency in the generation and control of coherent optical radiations. Nonlinear optics is based on the study ofeffects and phenomena related to the interaction of intense coherent light radiation with matter. Compared to other light sources laser radiation can provide high directionality, high monochromaticiry, high brightness and high photon degeneracy. At such a very intense incident beam, the matter responds in a nonlinear manner to the incident radiation fields, which endows the media :1 characteristic to change the refractive index or absorption coe fflcient of the media or the wavelength, or the frequency of the incident electromagnetic waves. This thesis encompasses the fabrication of nonlinear optical devices based on semiconductor and metal nanostructures. The presented work focus on the experimental and theoretical discussions on nonlinear optical effects especially nonlinear absorption and refraction exhibitted by metal and semiconductor nanostructures
Resumo:
Excimerlaser sind gepulste Gaslaser, die Laseremission in Form von Linienstrahlung – abhängig von der Gasmischung – im UV erzeugen. Der erste entladungsgepumpte Excimerlaser wurde 1977 von Ischenko demonstriert. Alle kommerziell verfügbaren Excimerlaser sind entladungsgepumpte Systeme. Um eine Inversion der Besetzungsdichte zu erhalten, die notwendig ist, um den Laser zum Anschwingen zu bekommen, muss aufgrund der kurzen Wellenlänge sehr stark gepumpt werden. Diese Pumpleistung muss von einem Impulsleistungsmodul erzeugt werden. Als Schaltelement gebräuchlich sind Thyratrons, Niederdruckschaltröhren, deren Lebensdauer jedoch sehr limitiert ist. Deshalb haben sich seit Mitte der 1990iger Jahre Halbleiterschalter mit Pulskompressionsstufen auch in dieser Anwendung mehr und mehr durchgesetzt. In dieser Arbeit wird versucht, die Pulskompression durch einen direkt schaltenden Halbleiterstapel zu ersetzen und dadurch die Verluste zu reduzieren sowie den Aufwand für diese Pulskompression einzusparen. Zudem kann auch die maximal mögliche Repetitionsrate erhöht werden. Um die Belastung der Bauelemente zu berechnen, wurden für alle Komponenten möglichst einfache, aber leistungsfähige Modelle entwickelt. Da die normalerweise verfügbaren Daten der Bauelemente sich aber auf andere Applikationen beziehen, mussten für alle Bauteile grundlegende Messungen im Zeitbereich der späteren Applikation gemacht werden. Für die nichtlinearen Induktivitäten wurde ein einfaches Testverfahren entwickelt um die Verluste bei sehr hohen Magnetisierungsgeschwindigkeiten zu bestimmen. Diese Messungen sind die Grundlagen für das Modell, das im Wesentlichen eine stromabhängige Induktivität beschreibt. Dieses Modell wurde für den „magnetic assist“ benützt, der die Einschaltverluste in den Halbleitern reduziert. Die Impulskondensatoren wurden ebenfalls mit einem in der Arbeit entwickelten Verfahren nahe den späteren Einsatzparametern vermessen. Dabei zeigte sich, dass die sehr gebräuchlichen Class II Keramikkondensatoren für diese Anwendung nicht geeignet sind. In der Arbeit wurden deshalb Class I Hochspannungs- Vielschicht- Kondensatoren als Speicherbank verwendet, die ein deutlich besseres Verhalten zeigen. Die eingesetzten Halbleiterelemente wurden ebenfalls in einem Testverfahren nahe den späteren Einsatzparametern vermessen. Dabei zeigte sich, dass nur moderne Leistungs-MOSFET´s für diesen Einsatz geeignet sind. Bei den Dioden ergab sich, dass nur Siliziumkarbid (SiC) Schottky Dioden für die Applikation einsetzbar sind. Für die Anwendung sind prinzipiell verschiedene Topologien möglich. Bei näherer Betrachtung zeigt sich jedoch, dass nur die C-C Transfer Anordnung die gewünschten Ergebnisse liefern kann. Diese Topologie wurde realisiert. Sie besteht im Wesentlichen aus einer Speicherbank, die vom Netzteil aufgeladen wird. Aus dieser wird dann die Energie in den Laserkopf über den Schalter transferiert. Aufgrund der hohen Spannungen und Ströme müssen 24 Schaltelemente in Serie und je 4 parallel geschaltet werden. Die Ansteuerung der Schalter wird über hochisolierende „Gate“-Transformatoren erreicht. Es zeigte sich, dass eine sorgfältig ausgelegte dynamische und statische Spannungsteilung für einen sicheren Betrieb notwendig ist. In der Arbeit konnte ein Betrieb mit realer Laserkammer als Last bis 6 kHz realisiert werden, der nur durch die maximal mögliche Repetitionsrate der Laserkammer begrenzt war.
Resumo:
The scope of this work is the fundamental growth, tailoring and characterization of self-organized indium arsenide quantum dots (QDs) and their exploitation as active region for diode lasers emitting in the 1.55 µm range. This wavelength regime is especially interesting for long-haul telecommunications as optical fibers made from silica glass have the lowest optical absorption. Molecular Beam Epitaxy is utilized as fabrication technique for the quantum dots and laser structures. The results presented in this thesis depict the first experimental work for which this reactor was used at the University of Kassel. Most research in the field of self-organized quantum dots has been conducted in the InAs/GaAs material system. It can be seen as the model system of self-organized quantum dots, but is not suitable for the targeted emission wavelength. Light emission from this system at 1.55 µm is hard to accomplish. To stay as close as possible to existing processing technology, the In(AlGa)As/InP (100) material system is deployed. Depending on the epitaxial growth technique and growth parameters this system has the drawback of producing a wide range of nano species besides quantum dots. Best known are the elongated quantum dashes (QDash). Such structures are preferentially formed, if InAs is deposited on InP. This is related to the low lattice-mismatch of 3.2 %, which is less than half of the value in the InAs/GaAs system. The task of creating round-shaped and uniform QDs is rendered more complex considering exchange effects of arsenic and phosphorus as well as anisotropic effects on the surface that do not need to be dealt with in the InAs/GaAs case. While QDash structures haven been studied fundamentally as well as in laser structures, they do not represent the theoretical ideal case of a zero-dimensional material. Creating round-shaped quantum dots on the InP(100) substrate remains a challenging task. Details of the self-organization process are still unknown and the formation of the QDs is not fully understood yet. In the course of the experimental work a novel growth concept was discovered and analyzed that eases the fabrication of QDs. It is based on different crystal growth and ad-atom diffusion processes under supply of different modifications of the arsenic atmosphere in the MBE reactor. The reactor is equipped with special valved cracking effusion cells for arsenic and phosphorus. It represents an all-solid source configuration that does not rely on toxic gas supply. The cracking effusion cell are able to create different species of arsenic and phosphorus. This constitutes the basis of the growth concept. With this method round-shaped QD ensembles with superior optical properties and record-low photoluminescence linewidth were achieved. By systematically varying the growth parameters and working out a detailed analysis of the experimental data a range of parameter values, for which the formation of QDs is favored, was found. A qualitative explanation of the formation characteristics based on the surface migration of In ad-atoms is developed. Such tailored QDs are finally implemented as active region in a self-designed diode laser structure. A basic characterization of the static and temperature-dependent properties was carried out. The QD lasers exceed a reference quantum well laser in terms of inversion conditions and temperature-dependent characteristics. Pulsed output powers of several hundred milli watt were measured at room temperature. In particular, the lasers feature a high modal gain that even allowed cw-emission at room temperature of a processed ridge wave guide device as short as 340 µm with output powers of 17 mW. Modulation experiments performed at the Israel Institute of Technology (Technion) showed a complex behavior of the QDs in the laser cavity. Despite the fact that the laser structure is not fully optimized for a high-speed device, data transmission capabilities of 15 Gb/s combined with low noise were achieved. To the best of the author`s knowledge, this renders the lasers the fastest QD devices operating at 1.55 µm. The thesis starts with an introductory chapter that pronounces the advantages of optical fiber communication in general. Chapter 2 will introduce the fundamental knowledge that is necessary to understand the importance of the active region`s dimensions for the performance of a diode laser. The novel growth concept and its experimental analysis are presented in chapter 3. Chapter 4 finally contains the work on diode lasers.
Resumo:
Background and Objectives: Bone remodeling is characterized as a cyclic and lengthy process. It is currently accepted that not only this dynamics is triggered by a biological process, but also biochemical, electrical, and mechanical stimuli are key factors for the maintenance of bone tissue. The hypothesis that low-level laser therapy (LLLT) may favor bone repair has been suggested. The purpose of this study was to evaluate the bone repair in defects created in rat lower jaws after stimulation with infrared LLLT directly on the injured tissue.Study Design/Materials and Methods: Bone defects were prepared on the mandibles of 30 Holtzman rats allocated in two groups (n = 15), which were divided in three evaluation period (15, 45, and 60 days), with five animals each. control group-no treatment of the defect; laser group-single laser irradiation with a GaAlAs semiconductor diode laser device (lambda = 780 nm; P = 35 mW t = 40 s; circle minus = 1.0 mm; D = 178 J/cm(2); E = 1.4 J) directly on the defect area. The rats were sacrificed at the preestablished periods and the mandibles were removed and processed for staining with hematoxylin and eosin, Masson's Trichrome and picrosirius techniques.Results: the histological results showed bone formation in both groups. However, the laser group exhibited an advanced tissue response compared to the control group, abbreviating the initial inflammatory reaction and promoting rapid new bone matrix formation at 15 and 45 days (P < 0. 05). on the other hand, there were no significant differences between the groups at 60 days.Conclusion: the use of infrared LLLT directly to the injured tissue showed a biostimulating effect on bone remodeling by stimulating the modulation of the initial inflammatory response and anticipating the resolution to normal conditions at the earlier periods. However, there were no differences between the groups at 60 days.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The application of multi-wavelength holography for surface shape measurement is presented. In our holographic setup a Bi12TiO 20 (BTO) photorefractive crystal was the holographic recording medium and a multimode diode laser emitting in the red region was the light source in a two-wave mixing scheme. The holographic imaging with multimode lasers results in multiple holograms in the BTO. By employing such lasers the resulting holographic image appears covered of interference fringes corresponding to the object relief and the interferogram spatial frequency is proportional to the diode laser free spectral range (FSR). We used a Fabry-Perot étalon at the laser output for laser mode selection. Thus, larger effective values of the laser FSR were achieved, leading to higher-spatial frequency interferograms and therefore to more sensitive and accurate measurements. The quantitative evaluation of the interferograms was performed through the phase stepping technique (PST) and the phase map unwrapping was carried out through the Cellular-Automata method. For a given surface, shape measurements with different interferogram spatial frequencies were performed and compared, concerning measurement noise and visual inspection.