986 resultados para Rh(II) catalyst
Resumo:
A simple, fast and low-cost atmospheric-pressure chemical vapor deposition technique is developed to synthesize high-yield carbon nanocoils (CNCs) using amorphous Co–P alloy as catalyst and thiophene as nucleation agent. The uniform catalyst pattern with the mean particle size of 350 nm was synthesized using a simple electroless plating process. This uniformity of the Co–P nanoparticles results in a high yield, very uniform size/shape distribution and regular structure of CNCs at the optimum growth temperature of 800 ◦C. The yield of CNCs reaches ∼76%; 70% of the CNCs have fiber diameters approximately 250 nm. The CNC coil diameters and lengths are 450–550nm and 0.5–2mm, respectively. The CNC nucleation and growth mechanism are also discussed.
Resumo:
Organisations have recently looked to design to become more customer oriented and co-create a new kind of value and service offering. This requires changes in the organisation mindset, involving the entire company, innovation processes and often its business model. One tool that has been successful in facilitating this has been Osterwalder and Pigneur (2010) ‘Business Model Canvas’ and more importantly the design process that supports the use of this tool. The aim of this paper is to explore the role design tools play in the translation and facilitation process of innovation in firms. Six ‘Design Innovation Catalysts’ (Wrigley, 2013) were interviewed in regards to their approach and use of design tools in order to better facilitate innovation. Results highlight the value of tools expands beyond their intended use to include; facilitation of communicating, permission to think creatively, and learning and teaching through visualisation. Findings from this research build upon the role of the Design Innovation Catalyst and provide additional implications for organisations.
Resumo:
RNA polymerase II (pol II) transcription termination requires co‐transcriptional recognition of a functional polyadenylation signal, but the molecular mechanisms that transduce this signal to pol II remain unclear. We show that Yhh1p/Cft1p, the yeast homologue of the mammalian AAUAAA interacting protein CPSF 160, is an RNA‐binding protein and provide evidence that it participates in poly(A) site recognition. Interestingly, RNA binding is mediated by a central domain composed of predicted β‐propeller‐forming repeats, which occurs in proteins of diverse cellular functions. We also found that Yhh1p/Cft1p bound specifically to the phosphorylated C‐terminal domain (CTD) of pol II in vitro and in a two‐hybrid test in vivo. Furthermore, transcriptional run‐on analysis demonstrated that yhh1 mutants were defective in transcription termination, suggesting that Yhh1p/Cft1p functions in the coupling of transcription and 3′‐end formation. We propose that direct interactions of Yhh1p/Cft1p with both the RNA transcript and the CTD are required to communicate poly(A) site recognition to elongating pol II to initiate transcription termination.
Resumo:
The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m−2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%–73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.
Resumo:
The ligands G1- and G2-oligo (benzyl ether) (PBE) dendrons and their iron(II) complexes [Fe(Gn-PBE)3]A2·xH2O (with n = 1, 2 and A = triflate, tosylate) were prepared. The magnetic properties of the complexes were investigated by a SQUID magnetometer. All complexes exhibit gradual spin transition below room temperature. At very low temperatures the magnetic behaviour reflects zero-field splitting (ZFS) effects. 57Fe-Mössbauer spectroscopy was performed to distinguish between ZFS of high spin species and spin state conversion into the low spin state. Further characterisation was carried out by thermogravimetric analysis (TGA) and FT-IR spectroscopy. Structural features have been determined by powder XRD measurements.
Resumo:
The dendritic triazole-based complexes \[Fe(G1-BOC)3](triflate) 2·xH2O (1; G1-BOC = tert-butyl {3-\[3-(3-tert- butoxycarbonylaminopropyl)-5-(\[1,2,4]triazol-4-ylcarbamoyl)-phenyl]propyl} carbamate, triflate = CF3SO3-), \[Fe(G1-BOC) 3]-(tosylate)2·xH2O(2;tosylate = p-CH3PhSO3-),\[Fe(G1-DPBE)3]-(triflate) 2·xH2O {3; G1-DPBE = 3,5-bis(3,5- didodecaoxybenzyloxy)-N-\[1,2,4]triazol-4-ylbenzamide}, \[Fe(G1-DPBE) 3]-(tosylate)2·xH2O (4) and \[Fe(G1-DPBE)3](BF4)2·xH2O (5) were designed and synthesized. Magnetic and thermal properties of these novel complexes were characterized by magnetic susceptibility measurements, 57Fe Mössbauer spectroscopy and thermogravimetric analysis or differential scanning calorimetry, respectively. All dendritic complexes under study show different spin-transition behaviour with respect to the nature of different dendritic ligands and counteranions. Complexes 1 and 2 have pronounced effects of a spin-state change during the first heating process and gradual spintransition properties for further temperature treatments, whereas 3 and 4 exhibited a very sharp spin-state change in the first heating procedures. Complex 5 showed a gradual spin-transition curve. In this paper, we report how the magnetic properties of these complexes are correlated with noncoordinated water molecules and their effects on spin states.
Resumo:
In part 1 of this update, we put forward the argument that integration in ERP based environments can be achieved in ways other than adopting a software configuration only approach. We drew on evidence from two large ERP implementations to show how, despite the cost implications, some customization, if carefully managed, could prove helpful. In this, the final part of the update, we discuss the benefits, and potential pitfalls, involved in enacting a non-standard based integration strategy. This requires attention to a) broadening the integration definition; b) bringing legacy practices forward and c) developing a customization based integration strategy.
Resumo:
Researchers worldwide with information about the Kirsten ras (Ki-ras) tumour genotype and outcome of patients with colorectal cancer were invited to provide that data in a schematized format for inclusion in a collaborative database called RASCAL (The Kirsten ras in-colorectal-cancer collaborative group). Our results from 2721 such patients have been presented previously and for the first time in any common cancer, showed conclusively that different gene mutations have different impacts on outcome, even when the mutations occur at the same site on the genome. To explore the effect of Ki-ras mutations at different stages of colorectal cancer, more patients were recruited to the database, which was reanalysed when information on 4268 patients from 42 centres in 21 countries had been entered. After predetermined exclusion criteria were applied, data on 3439 patients were entered into a multivariate analysis. This found that of the 12 possible mutations on codons 12 and 13 of Kirsten ras, only one mutation on codon 12, glycine to valine, found in 8.6% of all patients, had a statistically significant impact on failure-free survival (P = 0.004, HR 1.3) and overall survival (P = 0.008, HR 1.29). This mutation appeared to have a greater impact on outcome in Dukes’ C cancers (failure-free survival, P = 0.008, HR 1.5; overall survival P = 0.02, HR 1.45) than in Dukes’ B tumours (failure-free survival, P = 0.46, HR 1.12; overall survival P = 0.36, HR 1.15). Ki-ras mutations may occur early in the development of pre-cancerous adenomas in the colon and rectum. However, this collaborative study suggests that not only is the presence of a codon 12 glycine to valine mutation important for cancer progression but also that it may predispose to more aggressive biological behaviour in patients with advanced colorectal cancer.
Resumo:
Since its discovery in 1991, the bacterial periplasmic oxidative folding catalyst DsbA has been the focus of intense research. Early studies addressed why it is so oxidizing and how it is maintained in its less stable oxidized state. The crystal structure of Escherichia coli DsbA (EcDsbA) revealed that the oxidizing periplasmic enzyme is a distant evolutionary cousin of the reducing cytoplasmic enzyme thioredoxin. Recent significant developments have deepened our understanding of DsbA function, mechanism, and interactions: the structure of the partner membrane protein EcDsbB, including its complex with EcDsbA, proved a landmark in the field. Studies of DsbA machineries from bacteria other than E. coli K-12 have highlighted dramatic differences from the model organism, including a striking divergence in redox parameters and surface features. Several DsbA structures have provided the first clues to its interaction with substrates, and finally, evidence for a central role of DsbA in bacterial virulence has been demonstrated in a range of organisms. Here, we review current knowledge on DsbA, a bacterial periplasmic protein that introduces disulfide bonds into diverse substrate proteins and which may one day be the target of a new class of anti-virulence drugs to treat bacterial infection. Antioxid. Redox Signal. 14, 1729–1760.
Resumo:
Interactions of mercury(II) with the microtubule network of cells may lead to genotoxicity. Complexation of mercury(II) with EDTA is currently being discussed for its employment in detoxification processes of polluted sites. This prompted us to re-evaluate the effects of such complexing agents on certain aspects of mercury toxicity, by examining the influences of mercury(II) complexes on tubulin assembly and kinesin-driven motility of microtubules. The genotoxic effects were studied using the micronucleus assay in V79 Chinese hamster fibroblasts. Mercury(II) complexes with EDTA and related chelators interfered dose-dependently with tubulin assembly and microtubule motility in vitro. The no-effect-concentration for assembly inhibition was 1 μM of complexed Hg(II), and for inhibition of motility it was 0.05 μM, respectively. These findings are supported on the genotoxicity level by the results of the micronucleus assay, with micronuclei being induced dose-dependently starting at concentrations of about 0.05 μM of complexed Hg(II). Generally, the no-effect-concentrations for complexed mercury(II) found in the cell-free systems and in cellular assays (including the micronucleus test) were identical with or similar to results for mercury tested in the absence of chelators. This indicates that mercury(II) has a much higher affinity to sulfhydryls of cytoskeletal proteins than to this type of complexing agents. Therefore, the suitability of EDTA and related compounds for remediation of environmental mercury contamination or for other detoxification purposes involving mercury has to be questioned.
Resumo:
New Dawn is a cross-media visual art project that comprises a multi–channel video work (Boxcopy ARI, Brisbane) and a series of sculptural works (MetroArts, Brisbane) both of which conflate the online spectacle of real events with virtual gaming. The purpose of this project is to question this new phenomenon and what are the political, social and economic repercussions for these new technological developments on our bodies and subjectivities. By doing this my work asks us to reflect on how we function as a society in response to these new spaces of interaction, how we might respond to the political dimensions of these expanded sites of inhabitation, and how they might also represent a more troubling scenario for the possibility of dissent or opposition in our media saturated culture. The work was shown at multiple venues simultaneously. One of the components of the work won the 2013 Sunshine Coast Art Prize for sculpture.
Resumo:
Glassy carbon (GC) electrode modified with a self-assembled monolayer (SAM) of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) was used for the selective and highly sensitive determination of nitric oxide (NO). The SAM of 4α-CoIITAPc was formed on GC electrode by spontaneous adsorption from DMF containing 1 mM 4α-CoIITAPc. The SAM showed two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2 in 0.2 M phosphate buffer (PB) solution (pH 2.5). The SAM modified electrode showed excellent electrocatalytic activity towards the oxidation of nitric oxide (NO) by enhancing its oxidation current with 310 mV less positive potential shift when compared to bare GC electrode. In amperometric measurements, the current response for NO oxidation was linearly increased in the concentration range of 3×10−9 to 30×10−9 M with a detection limit of 1.4×10−10 M (S/N=3). The proposed method showed a better recovery for NO in human blood serum samples.
Resumo:
Spontaneous adsorption of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) on glassy carbon (GC) electrode leads to the formation of a stable self-assembled monolayer (SAM). Since the SAM of 4α-CoIITAPc is redox active, its adsorption on GC electrode was followed by cyclic voltammetry. SAM of 4α-CoIITAPc on GC electrode shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) value, calculated by integrating the charge under CoII oxidation, was used to study the adsorption thermodynamics and kinetics of 4α-CoIITAPc on GC surface. Cyclic voltammetric studies show that the adsorption of 4α-CoIITAPc on GC electrode has reached the saturation coverage (Γs) within 3 h. The Γs value for the SAM of 4α-CoIITAPc on GC electrode was found to be 2.37 × 10−10 mol cm−2. Gibbs free energy (ΔGads) and adsorption rate constant (kad) for the adsorption of 4α-CoIITAPc on GC surface were found to be −16.76 kJ mol−1 and 7.1 M−1 s−1, respectively. The possible mechanism for the self-assembly of 4α-CoIITAPc on GC surface is through the addition of nucleophilic amines to the olefinic bond on the GC surface in addition to a meager contribution from π stacking. The contribution of π stacking was confirmed from the adsorption of unsubstituted phthalocyanatocobalt(II) (CoPc) on GC electrode. Raman spectra for the SAM of 4α-CoIITAPc on carbon surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Raman and CV studies suggest that 4α-CoIITAPc is adopting nearly a flat orientation or little bit tilted orientation.