939 resultados para RICH SIO2
Resumo:
Silicon nanocrystals in SiO2 matrix are fabricated by plasma enhanced chemical vapor deposition followed by thermal annealing. The structure and photoluminescence (PL) of the resulting films is investigated as a function of deposition temperature. Drastic improvement of PL efficiency up to 12% is achieved when the deposition temperature is reduced from 250 degreesC to room temperature. Low-temperature deposition is found to result in a high quality final structure of the films in which the silicon nanocrystals are nearly strain-free, and the Si/SiO2 interface sharp. The demonstration of the superior structural and optical properties of the films represents an important step towards the development of silicon-based light emitters. (C) 2002 American Institute of Physics.
Resumo:
Ta is often used as a buffer layer in magnetic multilayers. In this study, Ta/Ni81Fe19/Ta multilayers were deposited by magnetron sputtering on sing-crystal Si with a 300-nm-thick SiO2 film. The composition and chemical states at the interface region of SiO2/Ta were studied using the X-ray photoelectron spectroscopy (XPS) and peak decomposition technique. The results show that there is an 'inter-mixing layer" at the SiO2/Ta interface due to a thermodynamically favorable reaction: 15 SiO2 + 37 Ta = 6 Ta2O5 + 5 Ta5Si3. Therefore, the Ta buffer layer thickness used to induce NiFe (111) texture increases.
Resumo:
Silicon-rich silicon oxide (SRSO) films are prepared by plasma-enhanced chemical vapor deposition method at the substrate temperature of 200degreesC. The effect of rapid thermal annealing and hydrogen plasma treatment on tire microstructure and light-emission of SRSO films are investigated in detail using micro-Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectra. It is found that the phase-separation degree of the films decreases with increasing annealing temperature from 300 to 600degreesC, while it increases with increasing annealing temperature from 600 to 900degreesC. The light-emission of the films are enhanced with increasing annealing temperature up to 500degreesC, while it is rapidly reduced when the annealing temperature exceeds 600degreesC. The peak position of the PL spectrum blueshifts by annealing at the temperature of 300degreesC, then it red-shifts with further raising annealing temperature. The following hydrogen plasma treatment results in a disproportionate increase of the PL intensity and a blueshift or redshift of the peak positions, depending on the pristine annealing temperature. It is thought that the size of amorphous silicon clusters, surface structure of the clusters and the distribution of hydrogen in the films can be changed during the annealing procedure. The results indicate that not only cluster size but also surface state of the clusters plays an important role in the determination of electronic structure of the amorphous silicon cluster and recombination process of light-generated carriers.
Resumo:
SiO2/Si/SiO2 nanometer double barriers (SSSNDB) with Si layers of twenty-seven different thicknesses in a range of 1-5 nm with an interval of 0.2 nm have been deposited on p-Si substrates using two-target alternative magnetron sputtering. Electroluminescence (EL) from the semitransparent Au film/SSSNDB/p-Si diodes and from a control diode without any Si layer have been observed under forward bias. Each EL spectrum of all these diodes can be fitted by two Gaussian bands with peak energies of 1.82 and 2.25 eV, and full widths at half maximum of 0.38 and 0.69 eV, respectively. It is found that the current, EL peak wavelength and intensities of the two Gaussian bands of the Au/SSSNDB/p-Si structure oscillate synchronously with increasing Si layer thickness with a period corresponding to half a de Broglie wavelength of the carriers. The experimental results strongly indicate that the EL originates mainly from two types of luminescence centres with energies of 1.82 and 2.25 eV in the SiO2 barriers, rather than from the nanometer Si well in the SSSNDB. The EL mechanism is discussed in detail.
Resumo:
Effects of rapid thermal annealing and SiO2 encapsulation on GaNAs/GaAs single quantum wells grown by plasma-assisted molecular-beam epitaxy were studied. Photoluminescence measurements on a series of samples with different well widths and N compositions were used to evaluate the effects. The intermixing of GaNAs and GaAs layers was clearly enhanced by the presence of a SiO2-cap layer. However, it was strongly dependent on the N composition. After annealing at 900 degreesC for 30 s, a blueshift up to 62 meV was observed for the SiO2-capped region of the sample with N composition of 1.5%, whereas only a small blueshift of 26 meV was exhibited for the bare region. For the sample with the N composition of 3.1%, nearly identical photoluminescence peak energy shift for both the SiO2-capped region and the bare region was observed. It is suggested that the enhanced intermixing is mainly dominated by SiO2-capped layer induced defects-assisted diffusion for the sample with smaller N composition, while with increasing N composition, the diffusion assisted by interior defects become predominant. (C) 2001 American Institute of Physics.
Resumo:
Eu ions doped SiO2 thin films, SiO2( Eu), were prepared by co-sputtering of SiO2 and Eu2O3 and Eu ion implantation into thermally grown SiO2 films. The Eu-L-3-edge X-ray absorption near edge structure (XANES) spectra of SiO2(Eu) films show a doublet absorption peak structure with energy difference of 7 eV, which indicates the conversion of Eu3+ to Eu2+ at high annealing temperature in N-2. The strong blue luminescence of SiO2(Eu) films prepared by ions implantation after films annealed above 1100 degreesC confirms the above argument.
Resumo:
Photoluminescence (PL) and Raman spectra of silicon nanocrystals prepared by Si ion implantion into SiO2 layers on Si substrate have been measured at room temperature. Their dependence on annealing temperature was investigated in detail. The PL peaks observed in the as-implanted sample originate from the defects in SiO2 layers caused by ion implantation. They actually disappear after thermal annealing at 800 degrees C. The PL peak from silicon nanocrystals was observed when thermal annealing temperatures are higher than 900 degrees C. The PL peak is redshifted to 1.7 eV and the intensity reaches maximum at the thermal annealing temperature of 1100 degrees C. The characterized Raman scattering peak of silicon nanocrystals was observed by using a right angle scattering configuration. The Raman signal related to the silicon nanocrystals appears only in the samples annealed at temperature above 900 degrees C. It further proves the formation of silicon nanocrystals in these samples. (C) 2000 American Institute of Physics. [S0021-8979(00)00215-2].
Resumo:
Silicon-based silica waveguide (SiO2/Si) devices have huge applications in optical telecommunication. SiO2 up to 25-mu m thick is necessary for some passive SiO2/Si waveguide devices. Oxidizing porous silicon to obtain thick SiO2 as cladding layer is presented. The experimental results of porous layer and oxidized porous layer formation were given. The relationship between cracking of SiO2 and temperature varying rate was given experimentally. Such conclusions are drawn: oxidation rate of porous silicon is several orders faster than that of bulk silicon; appropriate temperature variation rate during oxidation can prevent SiO2 on silicon substrates from cracking, and 25 mu m thick silicon dioxide layer has been obtained. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A method for oxidising porous silicon to obtain thick SiO2 as the cladding layer of silicon-based silica waveguides is presented. The experimental results of oxidation are given. The following conclusions are drawn: the oxidation rate of porous silicon is several orders higher than that of bulk silicon, the appropriate temperature variation rate during oxidation combined with proper porosity can prevent SiO2 on silicon substrates from cracking. and a 25 mu M thick silicon dioxide layer has been obtained.
Resumo:
The micro-Raman spectroscopy and infrared (IR) spectroscopy have been performed for the study of the microstructure of amorphous hydrogenated oxidized silicon (alpha-SiOx,:H) films prepared by Plasma Enhanced Chemical Vapor Deposition technique. It is found that a-SiOx:H consists of two phases: an amorphous silicon-rich phase and an oxygen-rich phase mainly comprised of HSi-SiO2 and HSi-O-3. The Raman scattering; results exhibit that the frequency of TO-like mode of amorphous silicon red-shifts with decreasing size of silicon-rich region. This is related to the quantum confinement effects, similar to the nanocrystalline silicon.
Resumo:
Raman scattering of nanocrystalline silicon embedded in SiO2 matrix is systematically investigated. It is found that the Raman spectra can be well fitted by 5 Lorentzian lines in the Raman shift range of 100-600 cm(-1). The two-phonon scattering is also observed in the range of 600-1100 cm(-1) The experimental results indicate that the silicon crystallites in the films consist of nanocrystalline phase and amorphous phase; both can contribute to the Raman scattering. Besides the red-shift of the first order optical phonon modes with the decreasing size of silicon nanocrystallites, we have also found an enhancement effect on the second order Raman scattering, and the size effect on their Raman shift.
Resumo:
Nanocrystalline silicon (nc-Si) embedded SiO2 matrix has been formed by annealing the SiOx films fabricated by plasma-enhanced chemical vapor deposition (PECVD) technique. Absorption coefficient and photoluminescence of the films have been measured at room temperature. The experimental results show that there is an "aUrbach-like" b exponential absorption in the spectral range of 2.0-3.0 eV. The relationship of (alpha hv)(1/2) proportional to(hv - E-g) demonstrates that the luminescent nc-Si have an indirect band structure. The existence of Stokes shift between photoluminescence and absorption edge indicates that radiative combination can take place not only between electron states and hole states but also between shallow trap states of electrons and holes. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The samples of silicon nanocrystals (nc-Si) were prepared by Si ion implanted into SiO2 layers. Photoluminescence spectra were measured at room temperature and their dependence on thermal annealing was investigated. The experimental results show that PL peaks originate from the defects in SiO2 layers caused by ion implantation when the thermal annealing temperature is lower than 800 C. The PL peak from nc-Si was observed when the thermal annealing temperature was higher than 900 C, and PL intensity reached its maximum at the thermal annealing temperature of 1100 C. As the annealing temperature increases the red shift of PL peak from nc-Si shows the quantum size effect. The characterized Raman scattering peak of nc-Si was observed at the right angle scattering configuration for the first time. It provides further support for the PL measurements.
Resumo:
Nanocrystalline silicon embedded SiO2 matrix has been formed by annealing the a-SiOx films fabricated by plasma enhanced chemical vapor deposition technique. Absorption and photoluminescence spectra of, the films have been studied in conjunction with micro-Raman scattering spectra. It is found that absorption presents an exponential dependence of absorption coefficient to photon energy in the range of 1.5-3.0 eV, and a sub-band appears in the range of 1.0-1.5 eV. The exponential absorption is due to the indirect band-to-band transition of electrons in silicon nanocrystallites, while the sub-band absorption is ascribed to transitions between surfaces and/or defect states of the silicon nanocrystallites. The existence of Stokes shift between absorption and photoluminescence suggests that the phonon-assisted luminescence would he enhanced due to the quantum confinement effects.
Resumo:
We introduce a double source electron beam evaporation (DSEBET) technique in this paper. The refractive index coatings were fabricated on K9 glass substrate by adjusting the evaporation rates of two independent sources. The coatings, which were described by atomic force microscopy (AFM), show good compactness and homogeneity. The antireflective (AR) coatings were fabricated on Superluminescent Diodes (SLD) by DSEBET. The hybrid AR coatings on the facets of SLD were prepared in evaporation rates of 0.22nm/s and 0.75nm/s for silicon and silicon dioxide, respectively. The results of AFM and spectral performance of coated SLD show that DSEBET has a promising future in preparing the coatings on optoelectronic devices.