979 resultados para Quantum States


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence (PL) spectra of GaInNAs/GaAs multiple quantum wells grown on a GaAs substrate by molecular beam epitaxy are measured in a range of temperatures and excitation power densities. The energy position of the dominant PL peak shows an anomalous S-shape temperature dependence instead of the Varshni relation. By careful inspection, especially for the PL under lower excitation power density, two near bandedge peaks are well identified. These are assigned to carriers localized in nitrogen-induced bound states and interband excitonic recombinations, respectively. It is suggested that the temperature-induced switch of such two luminescence peaks in relative intensity causes a significant mechanism responsible for the S-shape shift observed in GaInNAs. A quantitative model based on the thermal depopulation of carriers is used to explain the temperature dependence of the PL peak related to N-induced bound states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ground and excited state excitonic transitions of stacked InAs self-organized quantum dots (QDs) in a laser diode structure are studied. The interband absorption transitions of QDs are investigated by non-destructive PV spectra, indicating that the strongest absorption is related to the excited states with a high density and coincides with the photon energy of lasing emission. The temperature and excitation (electric injection) intensity dependences of photoluminescence and electroluminescence indicate the influence of state filling effect on the luminescence of threefold stacked QDs. The results indicate that different coupling channels exist between electronic states in both vertical and lateral directions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure of quantum rings is studied in the framework of the effective-mass theory and the two dimensional hard wall approximation. In cases of both the absence and presence of a magnetic field the electron momenta of confined states and the Coulomb energies of two electrons are given as functions of the angular momentum, inner radius, and magnetic-field strength. By comparing with experiments it is found that the width of the real confinement potential is 14 nm, much smaller than the phenomenal width. The Coulomb energy of two electrons is calculated as 11.1 meV. The quantum waveguide transport properties of Aharonov-Bohm (AB) rings are studied complementarily, and it is found that the correspondence of the positions of resonant peaks in AB rings and the momentum of confined states in closed rings is good for thin rings, representing a type of resonant tunneling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the effect of InAlAs/InGaAs cap layer on the optical properties of self-assembled InAs/GaAs quantum dots (QDs). We find that the photoluminescence emission energy, linewidth and the energy separation between the ground and first excited states of InAs QDs depend on the In composition and the thickness of thin InAlAs cap layer. Furthermore, the large energy separation of 103 meV was obtained from InAs/GaAs QDs with emission at 1.35 pm at room temperature. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have fabricated a quantum dot (QD) structure for long-wavelength temperature-insensitive semiconductor laser by introducing a combined InAlAs and InGaAs overgrowth layer on InAs/GaAs QDs. We found that QDs formed on GaAs (100) substrate by InAs deposition followed by the InAlAs and InGaAs combination layer demonstrate two effects: one is the photoluminescence peak redshift towards 1.35 mum at room temperature, the other is that the energy separation between the ground and first excited states can be up to 103 meV. These results are attributed to the fact that InAs/GaAs intermixing caused by In segregation at substrate temperature of 520 degreesC can be considerably suppressed by the thin InAlAs layer and the strain in the quantum dots can be reduced by the combined InAlAs and InGaAs layer. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on an idea that spatial separation of charge states can enhance quantum coherence, we propose a scheme for a quantum computation with the quantum bit (qubit) constructed from two coupled quantum dots. Quantum information is stored in the electron-hole pair state with the electron and hole located in different dots, which enables the qubit state to be very long-lived. Universal quantum gates involving any pair of qubits are realized by coupling the quantum dots through the cavity photon which is a hopeful candidate for the transfer of long-range information. The operation analysis is carried out by estimating the gate time versus the decoherence time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel line-order of InAs quantum dots (QDs) along the [1, 1, 0] direction on GaAs substrate has been prepared by self-organized growth. After 2.5 monolayer InAs deposition, QDs in the first layer of multi-layer samples started to gather in a line. Owing to the action of strong stress between layers, almost all the dots of the fourth layer gathered in lines. The dots lining up tightly are actually one-dimensional superlattice of QDs, of which the density of electronic states is different from that of isolated QDs or quantum wires. The photoluminescence spectra of our multi-layer QD sample exhibited a feature of very broad band so that it is suitable for the active medium of super luminescent diode. The reason of dots lining up is attributed to the hill-and-valley structure of the buffer, anisotropy and different diffusion rates in the different directions on the buffer and strong stress between QD layers. (C) 2002 Published by Elsevier Science B. V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high density of 1.02 x 10(11) cm(-2) of InAs islands with In(0.15)Gao(0.85)As underlying layer has been achieved on GaAs (10 0) substrate by solid source molecular beam epitaxy. Atomic force microscopy and PL spectra show the size evolution of InAs islands. A 1.3 mum photoluminescence (PL) from InAs islands with In(0.15)Gao(0.85)As underlying layer and InGaAs strain-reduced layer has been obtained. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excitonic states in AlxGa1-xN/GaN quantum wells (QWs) are studied within the framework of effective-mass theory. Spontaneous and piezoelectric polarizations are included and their impact on the excitonic states and optical properties are studied. We witnessed a significant blue shift in transition energy when the barrier width decreases and we attributed this to the redistribution of the built-in electric field between well layers and barrier layers. For the exciton the binding energies, we found in narrow QWs that there exists a critical value for barrier width, which demarcates the borderline for quantum confinement effect and the quantum confined Stark effect. Exciton and free carrier radiative lifetimes are estimated by simple argumentation. The calculated results suggest that there are efficient non-radiative mechanisms in narrow barrier QWs. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive the generalized rate equation for the coupled quantum-dot (QD) system irradiated by a microwave field in the presence of a quantum point contact. It is shown that when a microwave field is tuned in resonance with the energy difference between the ground states of two QD's, the photon-assisted tunneling occurs and, as a result, the coupled QD system may be used as the single qubit. Furthermore, we show that the oscillating current through the detector decays drastically as the dephasing rate increases, indicating clearly the influence of the dephasing effect induced by the quantum point contact used as a detecting device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the framework of effective-mass envelope function theory, the valence energy subbands and optical transitions of the InAs/GaAs quantum ring are calculated by using a four-band valence band model. Our model can be used to calculate the hole states of quantum wells, quantum wires, and quantum dots. The effect of finite offset and valence band mixing are taken into account. The energy levels of the hole are calculated in the different shapes of rings. Our calculations show that the effect of the difference between effective masses of holes in different materials on the valence subband structures is significant. Our theoretical results are consistent with the conclusion of the recent experimental measurements and should be useful for researching and making low-dimensional semiconductor optoelectronic devices. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical and electrical properties of ZnSe self-organized quantum dots were investigated using photoluminescence, capacitance-voltage, and deep level transient Fourier spectroscopy techniques. The temperature dependence of photoluminescence was employed to clarify the mechanism of photoluminescence thermal quenching processes in ZnSe quantum dots. A theoretic fit on considering a two-step quenching processes well explained the experimental data. The apparent carrier concentration profile obtained from capacitance-voltage measurements exhibits an accumulation peak at the depth of about 100nm below the sample surface, which is in good agreement with the location of the quantum dot layer. The electronic ground state of ZnSe quantum dots is determined to be about 0.11 eV below the conduction band of ZnS, which is similar to that obtained by simulating the thermal quenching of ZnSe photoluminescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micrometer-sized spherical glass microspheres were fabricated. CdSeS semiconductor nanometer clusters were incorporated into spherical microcavities. When a single microsphere was excited by a laser beam, the whispering gallery mode resonance of the photoluminescence of CdSeS quantum dots in the spherical microcavities was realized by the multiple total internal reflections at the spherical interface. The coupling of restricted electronic and photonic states was realized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron cyclotron resonance CR) measurements have been carried out in magnetic fields up to 32 T to study electron-phonon interaction in two heavily modulation-delta -doped GaAs/Al0.3Ga0.7As single-quantum-well samples. No measurable resonant magnetopolaron effects were observed in either sample in the region of the GaAs longitudinal optical (LO) phonons. However, when the CR frequency is above LO phonon frequency, omega (LO)=E-LO/(h) over bar, at high magnetic fields (B>27 T), electron CR exhibits a strong avoided-level-crossing splitting for both samples at frequencies close to (omega (LO)+ (E-2-E-1)1 (h) over bar, where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large with the minimum separation of 40 cm(-1) occurring at around 30.5 T. A detailed theoretical analysis, which includes a self-consistent calculation of the band structure and the effects of electron-phonon interaction on the CR, shows that this type of splitting is due to a three-level resonance between the second Landau level of the first electron subband and the lowest Landau level of the second subband plus one GaAs LO phonon. The absence of occupation effects in the final states and weak screening or this three-level process yields large energy separation even in the presence of high electron densities. Excellent agreement between the theory and the experimental results is obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum computing is a quickly growing research field. This article introduces the basic concepts of quantum computing, recent developments in quantum searching, and decoherence in a possible quantum dot realization.