911 resultados para QUANTITATIVE PROTEOMICS
Resumo:
In order to characterize inverse agonism at alpha1B-adrenoceptors, we have compared the concentration-response relationships of several quinazoline and non-quinazoline alpha1-adrenoceptor antagonists at cloned hamster wild-type (WT) alpha1B-adrenoceptors and a constitutively active mutant (CAM) thereof upon stable expression in Rat-1 fibroblasts. Receptor activation or inhibition thereof was assessed as [3H]inositol phosphate (IP) accumulation. Quinazoline (alfuzosin, doxazosin, prazosin, terazosin) and non-quinazoline alpha1-adrenoceptor antagonists (BE 2254, SB 216,469, tamsulosin) concentration-dependently inhibited phenylephrine-stimulated IP formation at both WT and CAM with Ki values similar to those previously found in radioligand binding studies. At CAM in the absence of phenylephrine, the quinazolines produced concentration-dependent inhibition of basal IP formation; the maximum inhibition was approximately 55%, and the corresponding EC50 values were slightly smaller than the Ki values. In contrast, BE 2254 produced much less inhibition of basal IP formation, SB 216,469 was close to being a neutral antagonist, and tamsulosin even weakly stimulated IP formation. The inhibitory effects of the quinazolines and BE 2254 as well as the stimulatory effect of tamsulosin were equally blocked by SB 216,469 at CAM. At WT in the absence of phenylephrine, tamsulosin did not cause significant stimulation and none of the other compounds caused significant inhibition of basal IP formation. We conclude that alpha1-adrenoceptor antagonsits with a quinazoline structure exhibit greater efficacy as inverse agonists than those without.
Resumo:
OBJECTIVE: To determine the means and the reference intervals of the quantitative morphometric parameters of femoroacetabular impingement (FAI) in normal hips with high-resolution computed tomography (CT). METHODS: We prospectively included 94 adult individuals who underwent CT for thoracic, abdominal or urologic pathologies. Patients with a clinical history of hip pathology and/or with osteoarthritis on CT were excluded. We calculated means and 95 % reference intervals for imaging signs of cam-type (alpha angle at 90° and 45° and femoral head-neck offset) and pincer-type impingement (acetabular version angle, lateral centre-edge angle and acetabular index). RESULTS: The 95 % reference interval limits were all far beyond the abnormal thresholds found in the literature for cam-type and to a lesser extent for pincer-type FAI. The upper limits of the reference intervals for the alpha angles (at 90°/45°) were 68°/83° (men) and 69°/84° (women), compared to thresholds from the literature (50°, 55° or 60°). Reference intervals were similar between genders for cam-type parameters, and slightly differed for pincer-type. CONCLUSION: The 95 % reference intervals of morphometric measurements of FAI in asymptomatic hips were beyond the abnormal thresholds, which was especially true for cam-type FAI. Our results suggest the need for redefining the current morphometric parameters used in the diagnosis of FAI. KEY POINTS: ? 95 % reference intervals limits of FAI morphotype were beyond currently defined thresholds. ? Reference intervals of pincer-type morphotype measurements were close to current definitions. ? Reference intervals of cam-type morphotype measurements were far beyond the current definitions. ? Current morphometric definitions of cam-type morphotype should be used with care.
Resumo:
We represent interval ordered homothetic preferences with a quantitative homothetic utility function and a multiplicative bias. When preferences are weakly ordered (i.e. when indifference is transitive), such a bias equals 1. When indifference is intransitive, the biasing factor is a positive function smaller than 1 and measures a threshold of indifference. We show that the bias is constant if and only if preferences are semiordered, and we identify conditions ensuring a linear utility function. We illustrate our approach with indifference sets on a two dimensional commodity space.
Resumo:
To provide a quantitative support to the handwriting evidence evaluation, a new method was developed through the computation of a likelihood ratio based on a Bayesian approach. In the present paper, the methodology is briefly described and applied to data collected within a simulated case of a threatening letter. Fourier descriptors are used to characterise the shape of loops of handwritten characters "a" of the true writer of the threatening letter, and: 1) with reference characters "a" of the true writer of the threatening letter, and then 2) with characters "a" of a writer who did not write the threatening letter. The findings support that the probabilistic methodology correctly supports either the hypothesis of authorship or the alternative hypothesis. Further developments will enable the handwriting examiner to use this methodology as a helpful assistance to assess the strength of evidence in handwriting casework.
Resumo:
Four general equilibrium search models are compared quantitatively. Thebaseline framework is a calibrated macroeconomic model of the US economydesigned for a welfare analysis of unemployment insurance policy. Theother models make three simple and natural specification changes,regarding tax incidence, monopsony power in wage determination, and therelevant threat point. These specification changes have a major impacton the equilibrium and on the welfare implications of unemploymentinsurance, partly because search externalities magnify the effects ofwage changes. The optimal level of unemployment insurance dependsstrongly on whether raising benefits has a larger impact on searcheffort or on hiring expenditure.
Resumo:
Age data frequently display excess frequencies at round or attractive ages, such as even numbers and multiples of five. This phenomenon of age heaping has been viewed as a problem in previous research, especially in demography and epidemiology. We see it as an opportunity and propose its use as a measure of human capital that can yield comparable estimates across a wide range of historical contexts. A simulation study yields methodological guidelines for measuring and interpreting differences in ageheaping, while analysis of contemporary and historical datasets demonstrates the existence of a robust correlation between age heaping and literacy at both the individual and aggregate level. To illustrate the method, we generate estimates of human capital in Europe over the very long run, which support the hypothesis of a major increase in human capital preceding the industrial revolution.
Resumo:
BACKGROUND: Sedation and therapeutic hypothermia (TH) delay neurological responses and might reduce the accuracy of clinical examination to predict outcome after cardiac arrest (CA). We examined the accuracy of quantitative pupillary light reactivity (PLR), using an automated infrared pupillometry, to predict outcome of post-CA coma in comparison to standard PLR, EEG, and somato-sensory evoked potentials (SSEP). METHODS: We prospectively studied over a 1-year period (June 2012-June 2013) 50 consecutive comatose CA patients treated with TH (33 °C, 24 h). Quantitative PLR (expressed as the % of pupillary response to a calibrated light stimulus) and standard PLR were measured at day 1 (TH and sedation; on average 16 h after CA) and day 2 (normothermia, off sedation: on average 46 h after CA). Neurological outcome was assessed at 90 days with Cerebral Performance Categories (CPC), dichotomized as good (CPC 1-2) versus poor (CPC 3-5). Predictive performance was analyzed using area under the ROC curves (AUC). RESULTS: Patients with good outcome [n = 23 (46 %)] had higher quantitative PLR than those with poor outcome [n = 27; 16 (range 9-23) vs. 10 (1-30) % at day 1, and 20 (13-39) vs. 11 (1-55) % at day 2, both p < 0.001]. Best cut-off for outcome prediction of quantitative PLR was <13 %. The AUC to predict poor outcome was higher for quantitative than for standard PLR at both time points (day 1, 0.79 vs. 0.56, p = 0.005; day 2, 0.81 vs. 0.64, p = 0.006). Prognostic accuracy of quantitative PLR was comparable to that of EEG and SSEP (0.81 vs. 0.80 and 0.73, respectively, both p > 0.20). CONCLUSIONS: Quantitative PLR is more accurate than standard PLR in predicting outcome of post-anoxic coma, irrespective of temperature and sedation, and has comparable prognostic accuracy than EEG and SSEP.
Resumo:
Time periods composing stance phase of gait can be clinically meaningful parameters to reveal differences between normal and pathological gait. This study aimed, first, to describe a novel method for detecting stance and inner-stance temporal events based on foot-worn inertial sensors; second, to extract and validate relevant metrics from those events; and third, to investigate their suitability as clinical outcome for gait evaluations. 42 subjects including healthy subjects and patients before and after surgical treatments for ankle osteoarthritis performed 50-m walking trials while wearing foot-worn inertial sensors and pressure insoles as a reference system. Several hypotheses were evaluated to detect heel-strike, toe-strike, heel-off, and toe-off based on kinematic features. Detected events were compared with the reference system on 3193 gait cycles and showed good accuracy and precision. Absolute and relative stance periods, namely loading response, foot-flat, and push-off were then estimated, validated, and compared statistically between populations. Besides significant differences observed in stance duration, the analysis revealed differing tendencies with notably a shorter foot-flat in healthy subjects. The result indicated which features in inertial sensors' signals should be preferred for detecting precisely and accurately temporal events against a reference standard. The system is suitable for clinical evaluations and provides temporal analysis of gait beyond the common swing/stance decomposition, through a quantitative estimation of inner-stance phases such as foot-flat.
Resumo:
BACKGROUND: Despite major advances in care of premature infants, survivors exhibit mild cognitive deficits in around 40%. Beside severe intraventricular haemorrhages (IVH) and cystic periventricular leucomalacia (PVL), more subtle patterns such as grade I and II IVH, punctuate WM lesions and diffuse PVL might be linked to the cognitive deficits. Grey matter disease is also recognized to contribute to long-term cognitive impairment.¦OBJECTIVE: We intend to use novel MR techniques to study more precisely the different injury patterns. In particular MP2RAGE (magnetization prepared dual rapid echo gradient) produces high-resolution quantitative T1 relaxation maps. This contrast is known to reflect tissue anomalies such as white matter injury in general and dysmyelination in particular. We also used diffusion tensor imaging, a quantitative technique known to reflect white matter maturation and disease.¦DESIGN/METHODS: All preterm infants born under 30 weeks of GA were included. Serial 3T MR-imaging using a neonatal head-coil at DOL 3, 10 and at term equivalent age (TEA), using DTI and MP2RAGE sequences was performed. MP2RAGE generates a T1 map and allows calculating the relaxation time T1. Multiple measurements were performed for each exam in 12 defined white and grey matter ROIs.¦RESULTS: 16 patients were recruited: mean GA 27 2/7 w (191,2d SD±10,8), mean BW 999g (SD±265). 39 MRIs were realized (12 early: mean 4,83d±1,75, 13 late: mean 18,77d±8,05 and 14 at TEA: 88,91d±8,96). Measures of relaxation time T1 show a gradual and significant decrease over time (for ROI PLIC mean±SD in ms: 2100.53±102,75, 2116,5±41,55 and 1726,42±51,31 and for ROI central WM: 2302,25±79,02, 2315,02±115,02 and 1992,7±96,37 for early, late and TEA MR respectively). These trends are also observed in grey matter area, especially in thalamus. Measurements of ADC values show similar monotonous decrease over time.¦CONCLUSIONS: From these preliminary results, we conclude that quantitative MR imaging in very preterm infants is feasible. On the successive MP2RAGE and DTI sequences, we observe a gradual decrease over time in the described ROIs, representing the progressive maturation of the WM micro-structure and interestingly the same evolution is observed in the grey matter. We speculate that our study will provide normative values for T1map and ADC and might be a predictive factor for favourable or less favourable outcome.
Resumo:
Microparticles are phospholipid vesicles shed mostly in biological fluids, such as blood or urine, by various types of cells, such as red blood cells (RBCs), platelets, lymphocytes, endothelial cells. These microparticles contain a subset of the proteome of their parent cell, and their ready availability in biological fluid has raised strong interest in their study, as they might be markers of cell damage. However, their small size as well as their particular physico-chemical properties makes them hard to detect, size, count and study by proteome analysis. In this review, we report the pre-analytical and methodological caveats that we have faced in our own research about red blood cell microparticles in the context of transfusion science, as well as examples from the literature on the proteomics of various kinds of microparticles.
Resumo:
Carbon and oxygen isotope studies of the host and gangue carbonates of Mississippi Valley-type zinc-lead deposits in the San Vicente District hosted in the Upper Triassic to Lower Jurassic dolostones of the Pucara basin (central Peru) were used to constrain models of the ore formation. A mixing model between an incoming hot saline slightly acidic radiogenic (Pb, Sr) fluid and the native formation water explains the overall isotopic variation (delta(13)C = - 11.5 to + 2.5 parts per thousand relative to PDB and delta(18)O = + 18.0 to + 24.3 parts per thousand relative to SMOW) of the carbonate generations. The dolomites formed during the main ore stage show a narrower range (delta(13)C = - 0.1 to + 1.7 parts per thousand and delta(18)O = + 18.7 to + 23.4 parts per thousand) which is explained by exchange between the mineralizing fluids and the host carbonates combined with changes in temperature and pressure. This model of fluid-rock interaction explains the pervasive alteration of the host dolomite I and precipitation of sphalerite I. The open-space filling hydrothermal white sparry dolomite and the coexisting sphalerite II formed by prolonged fluid-host dolomite interaction and limited CO2 degassing. Late void-filling dolomite III (or calcite) and the associated sphalerite III formed as the consequence of CO2 degassing and concomitant pH increase of a slightly acidic ore fluid. Widespread brecciation is associated to CO2 outgassing. Consequently, pressure variability plays a major role in the ore precipitation during the late hydrothermal events in San Vicente. The presence of native sulfur associated with extremely carbon-light calcites replacing evaporitic sulfates (e.g., delta(13)C = - 11.5 parts per thousand), altered native organic matter and heavier hydrothermal bitumen (from - 27.0 to - 23.0 parts per thousand delta(13)C) points to thermochemical reduction of sulfate and/or thiosulfate. The delta(13)C- and delta(18)O-values of the altered host dolostone and hydrothermal carbonates, and the carbon isotope composition of the associated organic matter show a strong regional homogeneity. These results coupled with the strong mineralogical and petrographic similarities of the different MVT occurrences perhaps reflects the fact that the mineralizing processes were similar in the whole San Vicente belt, suggesting the existence of a common regional mineralizing hydrothermal system with interconnected plumbing.
Resumo:
There is increasing evidence to suggest that the presence of mesoscopic heterogeneities constitutes the predominant attenuation mechanism at seismic frequencies. As a consequence, centimeter-scale perturbations of the subsurface physical properties should be taken into account for seismic modeling whenever detailed and accurate responses of the target structures are desired. This is, however, computationally prohibitive since extremely small grid spacings would be necessary. A convenient way to circumvent this problem is to use an upscaling procedure to replace the heterogeneous porous media by equivalent visco-elastic solids. In this work, we solve Biot's equations of motion to perform numerical simulations of seismic wave propagation through porous media containing mesoscopic heterogeneities. We then use an upscaling procedure to replace the heterogeneous poro-elastic regions by homogeneous equivalent visco-elastic solids and repeat the simulations using visco-elastic equations of motion. We find that, despite the equivalent attenuation behavior of the heterogeneous poro-elastic medium and the equivalent visco-elastic solid, the seismograms may differ due to diverging boundary conditions at fluid-solid interfaces, where there exist additional options for the poro-elastic case. In particular, we observe that the seismograms agree for closed-pore boundary conditions, but differ significantly for open-pore boundary conditions. This is an interesting result, which has potentially important implications for wave-equation-based algorithms in exploration geophysics involving fluid-solid interfaces, such as, for example, wave field decomposition.
Resumo:
Liquid-chromatography (LC) high-resolution (HR) mass spectrometry (MS) analysis can record HR full scans, a technique of detection that shows comparable selectivity and sensitivity to ion transitions (SRM) performed with triple-quadrupole (TQ)-MS but that allows de facto determination of "all" ions including drug metabolites. This could be of potential utility in in vivo drug metabolism and pharmacovigilance studies in order to have a more comprehensive insight in drug biotransformation profile differences in patients. This simultaneous quantitative and qualitative (Quan/Qual) approach has been tested with 20 patients chronically treated with tamoxifen (TAM). The absolute quantification of TAM and three metabolites in plasma was realized using HR- and TQ-MS and compared. The same LC-HR-MS analysis allowed the identification and relative quantification of 37 additional TAM metabolites. A number of new metabolites were detected in patients' plasma including metabolites identified as didemethyl-trihydroxy-TAM-glucoside and didemethyl-tetrahydroxy-TAM-glucoside conjugates corresponding to TAM with six and seven biotransformation steps, respectively. Multivariate analysis allowed relevant patterns of metabolites and ratios to be associated with TAM administration and CYP2D6 genotype. Two hydroxylated metabolites, α-OH-TAM and 4'-OH-TAM, were newly identified as putative CYP2D6 substrates. The relative quantification was precise (<20 %), and the semiquantitative estimation suggests that metabolite levels are non-negligible. Metabolites could play an important role in drug toxicity, but their impact on drug-related side effects has been partially neglected due to the tremendous effort needed with previous MS technologies. Using present HR-MS, this situation should evolve with the straightforward determination of drug metabolites, enlarging the possibilities in studying inter- and intra-patients drug metabolism variability and related effects.