885 resultados para Q-learning algorithm
Resumo:
We revisit the one-unit gradient ICA algorithm derived from the kurtosis function. By carefully studying properties of the stationary points of the discrete-time one-unit gradient ICA algorithm, with suitable condition on the learning rate, convergence can be proved. The condition on the learning rate helps alleviate the guesswork that accompanies the problem of choosing suitable learning rate in practical computation. These results may be useful to extract independent source signals on-line.
Resumo:
The parameterless self-organizing map (PLSOM) is a new neural network algorithm based on the self-organizing map (SOM). It eliminates the need for a learning rate and annealing schemes for learning rate and neighborhood size. We discuss the relative performance of the PLSOM and the SOM and demonstrate some tasks in which the SOM fails but the PLSOM performs satisfactory. Finally we discuss some example applications of the PLSOM and present a proof of ordering under certain limited conditions.
Resumo:
In this article, we propose a framework, namely, Prediction-Learning-Distillation (PLD) for interactive document classification and distilling misclassified documents. Whenever a user points out misclassified documents, the PLD learns from the mistakes and identifies the same mistakes from all other classified documents. The PLD then enforces this learning for future classifications. If the classifier fails to accept relevant documents or reject irrelevant documents on certain categories, then PLD will assign those documents as new positive/negative training instances. The classifier can then strengthen its weakness by learning from these new training instances. Our experiments’ results have demonstrated that the proposed algorithm can learn from user-identified misclassified documents, and then distil the rest successfully.
Resumo:
This paper presents a novel method for enabling a robot to determine the direction to a sound source through interacting with its environment. The method uses a new neural network, the Parameter-Less Self-Organizing Map algorithm, and reinforcement learning to achieve rapid and accurate response.
Resumo:
As empresas que almejam garantir e melhorar sua posição dentro de em um mercado cada vez mais competitivo precisam estar sempre atualizadas e em constante evolução. Na busca contínua por essa evolução, investem em projetos de Pesquisa & Desenvolvimento (P&D) e em seu capital humano para promover a criatividade e a inovação organizacional. As pessoas têm papel fundamental no desenvolvimento da inovação, mas para que isso possa florescer de forma constante é preciso comprometimento e criatividade para a geração de ideias. Criatividade é pensar o novo; inovação é fazer acontecer. Porém, encontrar pessoas com essas qualidades nem sempre é tarefa fácil e muitas vezes é preciso estimular essas habilidades e características para que se tornem efetivamente criativas. Os cursos de graduação podem ser uma importante ferramenta para trabalhar esses aspectos, características e habilidades, usando métodos e práticas de ensino que auxiliem no desenvolvimento da criatividade, pois o ambiente ensino-aprendizagem pesa significativamente na formação das pessoas. O objetivo deste estudo é de identificar quais fatores têm maior influência sobre o desenvolvimento da criatividade em um curso de graduação em administração, analisando a influência das práticas pedagógicas dos docentes e as barreiras internas dos discentes. O referencial teórico se baseia principalmente nos trabalhos de Alencar, Fleith, Torrance e Wechsler. A pesquisa transversal de abordagem quantitativa teve como público-alvo os alunos do curso de Administração de uma universidade confessional da Grande São Paulo, que responderam 465 questionários compostos de três escalas. Para as práticas docentes foi adaptada a escala de Práticas Docentes em relação à Criatividade. Para as barreiras internas foi adaptada a escala de Barreiras da Criatividade Pessoal. Para a análise da percepção do desenvolvimento da criatividade foi construída e validada uma escala baseada no referencial de características de uma pessoa criativa. As análises estatísticas descritivas e fatoriais exploratórias foram realizadas no software Statistical Package for the Social Sciences (SPSS), enquanto as análises fatoriais confirmatórias e a mensuração da influência das práticas pedagógicas e das barreiras internas sobre a percepção do desenvolvimento da criatividade foram realizadas por modelagem de equação estrutural utilizando o algoritmo Partial Least Squares (PLS), no software Smart PLS 2.0. Os resultados apontaram que as práticas pedagógicas e as barreiras internas dos discentes explicam 40% da percepção de desenvolvimento da criatividade, sendo as práticas pedagógicas que exercem maior influencia. A pesquisa também apontou que o tipo de temática e o período em que o aluno está cursando não têm influência sobre nenhum dos três construtos, somente o professor influencia as práticas pedagógicas.
Resumo:
As empresas que almejam garantir e melhorar sua posição dentro de em um mercado cada vez mais competitivo precisam estar sempre atualizadas e em constante evolução. Na busca contínua por essa evolução, investem em projetos de Pesquisa & Desenvolvimento (P&D) e em seu capital humano para promover a criatividade e a inovação organizacional. As pessoas têm papel fundamental no desenvolvimento da inovação, mas para que isso possa florescer de forma constante é preciso comprometimento e criatividade para a geração de ideias. Criatividade é pensar o novo; inovação é fazer acontecer. Porém, encontrar pessoas com essas qualidades nem sempre é tarefa fácil e muitas vezes é preciso estimular essas habilidades e características para que se tornem efetivamente criativas. Os cursos de graduação podem ser uma importante ferramenta para trabalhar esses aspectos, características e habilidades, usando métodos e práticas de ensino que auxiliem no desenvolvimento da criatividade, pois o ambiente ensino-aprendizagem pesa significativamente na formação das pessoas. O objetivo deste estudo é de identificar quais fatores têm maior influência sobre o desenvolvimento da criatividade em um curso de graduação em administração, analisando a influência das práticas pedagógicas dos docentes e as barreiras internas dos discentes. O referencial teórico se baseia principalmente nos trabalhos de Alencar, Fleith, Torrance e Wechsler. A pesquisa transversal de abordagem quantitativa teve como público-alvo os alunos do curso de Administração de uma universidade confessional da Grande São Paulo, que responderam 465 questionários compostos de três escalas. Para as práticas docentes foi adaptada a escala de Práticas Docentes em relação à Criatividade. Para as barreiras internas foi adaptada a escala de Barreiras da Criatividade Pessoal. Para a análise da percepção do desenvolvimento da criatividade foi construída e validada uma escala baseada no referencial de características de uma pessoa criativa. As análises estatísticas descritivas e fatoriais exploratórias foram realizadas no software Statistical Package for the Social Sciences (SPSS), enquanto as análises fatoriais confirmatórias e a mensuração da influência das práticas pedagógicas e das barreiras internas sobre a percepção do desenvolvimento da criatividade foram realizadas por modelagem de equação estrutural utilizando o algoritmo Partial Least Squares (PLS), no software Smart PLS 2.0. Os resultados apontaram que as práticas pedagógicas e as barreiras internas dos discentes explicam 40% da percepção de desenvolvimento da criatividade, sendo as práticas pedagógicas que exercem maior influencia. A pesquisa também apontou que o tipo de temática e o período em que o aluno está cursando não têm influência sobre nenhum dos três construtos, somente o professor influencia as práticas pedagógicas.
Resumo:
In this paper we present a new approach to ontology learning. Its basis lies in a dynamic and iterative view of knowledge acquisition for ontologies. The Abraxas approach is founded on three resources, a set of texts, a set of learning patterns and a set of ontological triples, each of which must remain in equilibrium. As events occur which disturb this equilibrium various actions are triggered to re-establish a balance between the resources. Such events include acquisition of a further text from external resources such as the Web or the addition of ontological triples to the ontology. We develop the concept of a knowledge gap between the coverage of an ontology and the corpus of texts as a measure triggering actions. We present an overview of the algorithm and its functionalities.
Resumo:
The performance of seven minimization algorithms are compared on five neural network problems. These include a variable-step-size algorithm, conjugate gradient, and several methods with explicit analytic or numerical approximations to the Hessian.
Resumo:
An adaptive back-propagation algorithm is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, both numerical studies and a rigorous analysis show that the adaptive back-propagation method results in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.
Resumo:
Neural networks are usually curved statistical models. They do not have finite dimensional sufficient statistics, so on-line learning on the model itself inevitably loses information. In this paper we propose a new scheme for training curved models, inspired by the ideas of ancillary statistics and adaptive critics. At each point estimate an auxiliary flat model (exponential family) is built to locally accommodate both the usual statistic (tangent to the model) and an ancillary statistic (normal to the model). The auxiliary model plays a role in determining credit assignment analogous to that played by an adaptive critic in solving temporal problems. The method is illustrated with the Cauchy model and the algorithm is proved to be asymptotically efficient.
Resumo:
A theoretical model is presented which describes selection in a genetic algorithm (GA) under a stochastic fitness measure and correctly accounts for finite population effects. Although this model describes a number of selection schemes, we only consider Boltzmann selection in detail here as results for this form of selection are particularly transparent when fitness is corrupted by additive Gaussian noise. Finite population effects are shown to be of fundamental importance in this case, as the noise has no effect in the infinite population limit. In the limit of weak selection we show how the effects of any Gaussian noise can be removed by increasing the population size appropriately. The theory is tested on two closely related problems: the one-max problem corrupted by Gaussian noise and generalization in a perceptron with binary weights. The averaged dynamics can be accurately modelled for both problems using a formalism which describes the dynamics of the GA using methods from statistical mechanics. The second problem is a simple example of a learning problem and by considering this problem we show how the accurate characterization of noise in the fitness evaluation may be relevant in machine learning. The training error (negative fitness) is the number of misclassified training examples in a batch and can be considered as a noisy version of the generalization error if an independent batch is used for each evaluation. The noise is due to the finite batch size and in the limit of large problem size and weak selection we show how the effect of this noise can be removed by increasing the population size. This allows the optimal batch size to be determined, which minimizes computation time as well as the total number of training examples required.
Resumo:
An adaptive back-propagation algorithm parameterized by an inverse temperature 1/T is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, we analyse these learning algorithms in both the symmetric and the convergence phase for finite learning rates in the case of uncorrelated teachers of similar but arbitrary length T. These analyses show that adaptive back-propagation results generally in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.
Resumo:
Efficient new Bayesian inference technique is employed for studying critical properties of the Ising linear perceptron and for signal detection in code division multiple access (CDMA). The approach is based on a recently introduced message passing technique for densely connected systems. Here we study both critical and non-critical regimes. Results obtained in the non-critical regime give rise to a highly efficient signal detection algorithm in the context of CDMA; while in the critical regime one observes a first-order transition line that ends in a continuous phase transition point. Finite size effects are also studied. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Online learning is discussed from the viewpoint of Bayesian statistical inference. By replacing the true posterior distribution with a simpler parametric distribution, one can define an online algorithm by a repetition of two steps: An update of the approximate posterior, when a new example arrives, and an optimal projection into the parametric family. Choosing this family to be Gaussian, we show that the algorithm achieves asymptotic efficiency. An application to learning in single layer neural networks is given.