975 resultados para Primary bloodstream infection
Resumo:
Several primary immunodeficiency diseases affecting the interleukin 12/interferon gamma (IFN-gamma) pathway have been identified, most of them characterized by recurrent and protracted infections produced by intracellular microorganisms, particularly by several species of mycobacteria. In the present study we analyzed the expression of IFN-gamma receptor (IFN-gammaR) and signal transducer and activator of transcription 1 (STAT-1) in 4 children with Mycobacterium tuberculosis infection of uncommon clinical presentation. These molecules were evaluated by flow cytometry and Western blotting in B cells transformed with Epstein-Barr virus and mutations were scanned by single-strand conformational polymorphisms and DNA sequencing. The expression of IFN-gammaR1 was normal in all 4 patients. The genetic analysis of IFN-gammaR1 and IFN-gammaR2 coding sequences did not reveal any mutation. The expression of the STAT-1 molecule was similar in patients and healthy controls; however, when the phosphorylation of this transcription factor in response to IFN-gamma activation was evaluated by Western blot, a significant lower signal was evident in one patient. These data indicate that there are no alterations in the expression or function of the IFN-gammaR chains in these patients. However, the low level of STAT-1 phosphorylation found in one of these patients might be explained by a defect in one of the molecules involved in the signal transduction pathway after IFN-gamma interacts with its receptor. In the other three patients the inability to eliminate the mycobacteria may be due to a defect in another effector mechanism of the mononuclear phagocytes.
Resumo:
Because low tumor necrosis factor-alpha (TNF-alpha) production has been reported in malnourished children, in contrast with high production of TNF-alpha in experimental protein-energy malnutrition, we reevaluated the production of TNF-alpha in whole blood cultures from children with primary malnutrition free from infection, and in healthy sex- and age-matched controls. Mononuclear cells in blood diluted 1:5 in endotoxin-free medium released TNF-alpha for 24 h. Spontaneously released TNF-alpha levels (mean ± SEM), as measured by enzyme immunoassay in the supernatants of unstimulated 24-h cultures, were 10,941 ± 2,591 pg/ml in children with malnutrition (N = 11) and 533 ± 267 pg/ml in controls (N = 18) (P < 0.0001). TNF-alpha production was increased by stimulation with lipopolysaccharide (LPS), with maximal production of 67,341 ± 16,580 pg/ml TNF-alpha in malnourished children and 25,198 ± 2,493 pg/ml in controls (P = 0.002). In control subjects, LPS dose-dependently induced TNF-alpha production, with maximal responses obtained at 2000 ng/ml. In contrast, malnourished patients produced significantly more TNF-alpha with 0.02-200 ng/ml LPS, responded maximally at a 10-fold lower LPS concentration (200 ng/ml), and presented high-dose inhibition at 2000 ng/ml. TNF-alpha production a) was significantly influenced by LPS concentration in control subjects, but not in malnourished children, who responded strongly to very low LPS concentrations, and b) presented a significant, negative correlation (r = -0.703, P = 0.023) between spontaneous release and the LPS concentration that elicited maximal responses in malnourished patients. These findings indicate that malnourished children are not deficient in TNF-alpha production, and suggest that their cells are primed for increased TNF-alpha production.
Resumo:
Human herpesvirus-8 (HHV-8) appears to be transmitted mainly by sexual contact. However, several studies suggest that in developing countries the infection may be acquired early in life by routes other than sexual transmission. The present study estimated the seroprevalence of HHV-8 in Brazilian children born to HIV-1-infected mothers. The serum samples were collected in a cross-sectional cohort study from 99 children born to HIV-infected mothers (median age 3.27 years; range 1.5-13.8 years) attending the outpatient clinic of the Federal University of São Paulo. IgG antibodies to HHV-8 latency-associated nuclear antigen and lytic phase antigens were detected by immunofluorescence assays. The samples tested were collected from children aged 12 months or older to exclude the possibility of cross-placental antibody transport. The total prevalence of anti-lytic antibodies in this population (5/99; 5%) reveals that HHV-8 infection can occur during childhood. Children aged 1.5 to 2 years had a seroprevalence of 2% (1/50) and children aged 3.25 to 13.8 years had a seroprevalence of 8% (4/49). This difference was not statistically significant, probably because of the small size of the sample, but it suggests that HHV-8 infection occurs more commonly late in infancy. Further prospective studies are necessary to evaluate the timing and risk factors for primary HHV-8 infection in the pediatric population.
Resumo:
The pathogenesis of chagasic cardiomyopathy is not completely understood, but it has been correlated with parasympathetic denervation (neurogenic theory) and inflammatory activity (immunogenic theory) that could affect heart muscarinic acetylcholine receptor (mAChR) expression. In order to further understand whether neurogenic and/or immunogenic alterations are related to changes in mAChR expression, we studied two models of Trypanosoma cruzi infection: 1) in 3-week-old male Sprague Dawley rats chronically infected with T. cruzi and 2) isolated primary cardiomyocytes co-cultured with T. cruzi and peripheral blood mononuclear cells (PBMC). Using [³H]-quinuclidinylbenzilate ([³H]-QNB) binding assays, we evaluated mAChR expression in homogenates from selected cardiac regions, PBMC, and cultured cardiomyocytes. We also determined in vitro protein expression and pro-inflammatory cytokine expression in serum and cell culture medium by ELISA. Our results showed that: 1) mAChR were significantly (P < 0.05) up-regulated in right ventricular myocardium (means ± SEM; control: 58.69 ± 5.54, N = 29; Chagas: 72.29 ± 5.79 fmol/mg, N = 34) and PBMC (control: 12.88 ± 2.45, N = 18; Chagas: 20.22 ± 1.82 fmol/mg, N = 19), as well as in cardiomyocyte transmembranes cultured with either PBMC/T. cruzi co-cultures (control: 24.33 ± 3.83; Chagas: 43.62 ± 5.08 fmol/mg, N = 7 for both) or their conditioned medium (control: 37.84 ± 3.84, N = 4; Chagas: 54.38 ± 6.28 fmol/mg, N = 20); 2) [³H]-leucine uptake was increased in cardiomyocytes co-cultured with PBMC/T. cruzi-conditioned medium (Chagas: 21,030 ± 2321; control 10,940 ± 2385 dpm, N = 7 for both; P < 0.05); 3) plasma IL-6 was increased in chagasic rats, IL-1β, was increased in both plasma of chagasic rats and in the culture medium, and TNF-α level was decreased in the culture medium. In conclusion, our results suggest that cytokines are involved in the up-regulation of mAChR in chronic Chagas disease.
Resumo:
La méthylation de l'ADN est une marque épigénétique importante chez les mammifères. Malgré le fait que la méthylation de la cytosine en 5' (5mC) soit reconnue comme une modification épigénétique stable, il devient de plus en plus reconnu qu'elle soit un processus plus dynamique impliquant des voies de méthylation et de déméthylation actives. La dynamique de la méthylation de l'ADN est désormais bien caractérisée dans le développement et dans le fonctionnement cellulaire des mammifères. Très peu est cependant connu concernant les implications régulatrices dans les réponses immunitaires. Pour se faire, nous avons effectué des analyses du niveau de transcription des gènes ainsi que du profilage épigénétique de cellules dendritiques (DCs) humaines. Ceux-ci ont été faits avant et après infection par le pathogène Mycobacterium tuberculosis (MTB). Nos résultats fournissent le premier portrait génomique du remodelage épigénétique survenant dans les DCs en réponse à une infection bactérienne. Nous avons constaté que les changements dans la méthylation de l'ADN sont omniprésents, identifiant 3,926 régions différentiellement méthylées lors des infections par MTB (MTB-RDMs). Les MTB-RDMs montrent un chevauchement frappant avec les régions génomiques marquées par les histones associées avec des régions amplificatrices. De plus, nos analyses ont révélées que les MTB-RDMs sont activement liées par des facteurs de transcription associés à l'immunité avant même d'être infecté par MTB, suggérant ces domaines comme étant des éléments d'activation dans un état de dormance. Nos données suggèrent que les changements actifs dans la méthylation jouent un rôle essentiel pour contrôler la réponse cellulaire des DCs à l'infection bactérienne.
Resumo:
Les cellules endothéliales (EC) constituent une première barrière physique à la dissémination de virus pléiotropiques circulant par voie hématogène mais leur contribution à la défense innée anti-virale est peu connue. Des dysfonctions des EC de la barrière hémato-encéphalique (BMEC) et des sinusoïdes hépatiques (LSEC) ont été rapportées dans des neuropathologies et des hépatites aiguës ou chroniques d’origine virale, suggérant que des atteintes à leur intégrité contribuent à la pathogenèse. Les sérotypes de coronavirus de l’hépatite murine (MHV), se différenciant par leur capacité à induire des hépatites et des maladies neurologiques de sévérité variable et/ou leur tropisme pour les EC, représentent des modèles viraux privilégiés pour déterminer les conséquences de l’infection des EC sur la pathogenèse virale. Lors d’infection par voie hématogène, le sérotype MHV3, le plus virulent des MHV, induit une hépatite fulminante, caractérisée par une réponse inflammatoire sévère, et des lésions neurologiques secondaires alors que le sérotype moins virulent, MHV-A59, induit une hépatite modérée sans atteintes secondaires du système nerveux central (SNC). Par ailleurs, le sérotype MHV3, à la différence du MHV-A59, démontre une capacité à stimuler la production de cytokines par la voie TLR2. Les variants atténués du MHV3, les virus 51.6-MHV3 et YAC-MHV3, sont caractérisés par un faible tropisme pour les LSEC et induisent respectivement une hépatite modérée et subclinique. Compte tenu de l’importance des LSEC dans le maintien de la tolérance hépatique et de l’élimination des pathogènes circulants, il a été postulé que la sévérité de l’hépatite et de la réponse inflammatoire lors d’infections par les MHV est associée à la réplication virale et à l’altération des propriétés tolérogéniques et vasculaires des LSEC. Les désordres inflammatoires hépatiques pourraient résulter d’une activation différentielle du TLR2, plutôt que des autres TLR et des hélicases, selon les sérotypes. D’autre part, compte tenu du rôle des BMEC dans la prévention des infections du SNC, il a été postulé que l’invasion cérébrale secondaire par les coronavirus est reliée à l’infection des BMEC et le bris subséquent de la barrière hémato-encéphalique (BHE). À l’aide d’infections in vivo et in vitro par les différents sérotypes MHV, chez des souris ou des cultures de BMEC et de LSEC, nous avons démontré, d’une part, que l’infection in vitro des LSEC par le sétotype MHV3, à la différence des variants 51.6- et YAC-MHV3, altérait la production du facteur vasodilatant NO et renversait leur phénotype tolérogénique en favorisant la production de cytokines et de chimiokines inflammatoires. Ces dysfonctions se traduisaient in vivo par une réponse inflammatoire incontrôlée et une dérégulation du recrutement intrahépatique de leucocytes, favorisant la réplication virale et les dommages hépatiques. Nous avons aussi démontré, à l’aide de souris TLR2 KO et de LSEC dont l’expression du TLR2 a été abrogée par des siRNA, que la sévérité de l’hépatite et de la réponse inflammatoire induite par le sérotype MHV3, dépendait en partie de l’induction et de l’activation préférentielle du TLR2 par le virus dans le foie. D’autre part, la sévérité de la réplication virale au foie et des désordres dans le recrutement leucocytaire intrahépatique induits par le MHV3, et non par le MHV-A59 et le 51.6-MHV3, corrélaient avec une invasion virale subséquente du SNC, au niveau de la BHE. Nous avons démontré que l’invasion cérébrale du MHV3 était associée à une infection productive des BMEC et l’altération subséquente des protéines de jonctions serrées occludine, VE-cadhérine et ZO-1 se traduisant par une augmentation de la perméabilité de la BHE et l’entrée consécutive du virus dans le cerveau. Dans l’ensemble, les résultats de cette étude mettent en lumière l’importance du maintien de l’intégrité structurale et fonctionnelle des LSEC et des BMEC lors d’infections virales aigües par des MHV afin de limiter les dommages hépatiques associés à l’induction d’une réponse inflammatoire exagérée et de prévenir le passage des virus au cerveau suite à une dissémination par voie hématogène. Ils révèlent en outre un nouveau rôle aggravant pour le TLR2 dans l’évolution de l’hépatite virale aigüe ouvrant la voie à de nouvelles avenues thérapeutiques visant à moduler l’activité inflammatoire du TLR2.
Resumo:
Objective: Evaluation of selective decontamination of the digestive tract (SDD) on late mortality in ventilated trauma patients in an intensive care unit (ICU). Methods: A multicenter, randomized controlled trial was undertaken in 401 trauma patients with Hospital Trauma Index-Injury Severity Score of 16 or higher. Patients were randomized to control (n = 200) or SDD (n = 201), using polymyxin E, tobramycin, and amphotericin B in throat and gut throughout ICU treatment combined with cefotaxime for 4 days. Primary endpoint was late mortality excluding early death from hemorrhage or craniocerebral injury. Secondary endpoints were infection and organ dysfunction. Results: Mortality was 20.9% with SDD and 22.0% in controls. Overall late mortality was 15.3% (57/372) as 29 patients died from cerebral injury, 16 SDD and 13 control. The odds ratio (95% confidence intervals) of late mortality for SDD relative to control was 0.75 (0.40-1.37), corresponding to estimates of 13.4% SDD and 17.2% control. The overall infection rate was reduced in the test group (48.8% vs. 61.0%). SDD reduced lower airway infections (30.9% vs. 50.0%) and bloodstream infections due to aerobic Gram-negative bacilli (2.5% vs. 7.5%). No difference in organ dysfunction was found. Concluson: This study demonstrates that SDD significantly reduces infection in multiple trauma, although this RCT in 401 patients was underpowered to detect a mortality benefit.
Resumo:
Aim. To investigate the root canal microbiota of primary teeth with apical periodontitis and the in vivo antimicrobial effects of a calcium hydroxide/chlorhexidine paste used as root canal dressing. Design. Baseline samples were collected from 30 root canals of primary teeth with apical periodontitis. Then, the root canals were filled with a calcium hydroxide paste containing 1% chlorhexidine for 14 days and the second bacteriologic samples were taken prior to root canal filling. Samples were submitted to microbiologic culture procedure to detect root canal bacteria and processed for checkerboard DNA-DNA hybridization. Results. Baseline microbial culture revealed high prevalence and cfu number of anaerobic, black-pigmented bacteroides, Streptococcus, and aerobic microorganisms. Following root canal dressing, the overall number of cfu was dramatically diminished compared to initial contamination (P < 0.05), although prevalence did not change (P > 0.05). Of 35 probes used for checkerboard DNA-DNA hybridization, 31 (88.57%) were present at baseline, and following root canal dressing, the number of positive probes reduced to 13 (37.14%). Similarly, the number of bacterial cells diminished folowing application of calcium hydroxide/chlorhexidine root canal dressing (P = 0.006). Conclusion. Apical periodontitis is caused by a polymicrobial infection, and a calcium hydroxide/chlorhexidine paste is effective in reducing the number of bacteria inside root canals when applied as a root canal dressing.
Resumo:
Aim To evaluate, by scanning electron microscopy (SEM), the presence of biofilms on the external surfaces of the apical third of roots of human primary teeth with vital or necrotic pulps with and without radiographically evident periradicular pathosis. Methodology Eighteen teeth were selected: group I - normal pulp (n = 5), group II - pulp necrosis without radiographic evidence of periapical pathosis (n = 7) and group III - pulp necrosis with well-defined radiographic periapical pathosis (n = 6). After extraction, the teeth were washed with saline and immersed in 0.03 g mL(-1) trypsin solution for 20 min. The teeth were then washed in sodium cacodilate buffer and stored in receptacles containing modified Karnovsky solution. The teeth were sectioned, dehydrated in an ethanol series, critical-point dried with CO(2), sputter coated with gold and the external root surface in the apical third examined by SEM. Results In the teeth of groups I and II, the apical root surfaces were covered by collagen fibres, with no evidence of bacteria (100%). In the teeth of group III, the root apices had no collagen fibres but revealed resorptive areas containing microorganisms (cocci, bacilli, filaments and spirochetes) in all cases (100%). Conclusion Microorganisms organized as biofilms on the external root surface (extraradicular infection) were detected in primary teeth with pulp necrosis and radiographically visible periapical pathosis.
Resumo:
Toll-like receptors (TLRs) present in innate immune cells recognize pathogen molecular patterns and influence immunity to control the host-parasite interaction. The objective of this study was to characterize the involvement of TLR4 in the innate and adaptive immunity to Paracoccidioides brasiliensis, the most important primary fungal pathogen of Latin America. We compared the responses of C3H/HeJ mice, which are naturally defective in TLR4 signaling, with those of C3H/HePas mice, which express functional receptors, after in vitro and in vivo infection with P. brasiliensis. Unexpectedly, we verified that TLR4-defective macrophages infected in vitro with P. brasiliensis presented decreased fungal loads associated with impaired synthesis of nitric oxide, interleukin-12 (IL-12), and macrophage chemotactic protein 1 (MCP-1). After intratracheal infection with 1 million yeasts, TLR4-defective mice developed reduced fungal burdens and decreased levels of pulmonary nitric oxide, proinflammatory cytokines, and antibodies. TLR4-competent mice produced elevated levels of IL-12 and tumor necrosis factor alpha (TNF-alpha), besides cytokines of the Th17 pattern, indicating a proinflammatory role for TLR4 signaling. The more severe infection of TLR4-normal mice resulted in increased influx of activated macrophages and T cells to the lungs and progressive control of fungal burdens but impaired expansion of regulatory T cells (Treg cells). In contrast, TLR4-defective mice were not able to clear their diminished fungal burdens totally, a defect associated with deficient activation of T-cell immunity and enhanced development of Treg cells. These divergent patterns of immunity, however, resulted in equivalent mortality rates, indicating that control of elevated fungal growth mediated by vigorous inflammatory reactions is as deleterious to the hosts as low fungal loads inefficiently controlled by limited inflammatory reactions.
Resumo:
To study the role of TLR2 in a experimental model of chronic pulmonary infection, TLR2-deficient and wild-type mice were intratracheally infected with Paracoccidioides brasiliensis, a primary fungal pathogen. Compared with control, TLR2(-/-) mice developed a less severe pulmonary infection and decreased NO synthesis. Equivalent results were detected with in vitro-infected macrophages. Unexpectedly, despite the differences in fungal loads both mouse strains showed equivalent survival times and severe pulmonary inflammatory reactions. Studies on lung-infiltrating leukocytes of TLR2(-/-) mice demonstrated an increased presence of polymorphonuclear neutrophils that control fungal loads but were associated with diminished numbers of activated CD4(+) and CD8(+) T lymphocytes. TLR2 deficiency leads to minor differences in the levels of pulmonary type 1 and type 2 cytokines, but results in increased production of KC, a CXC chemokine involved in neutrophils chemotaxis, as well as TGF-beta, IL-6, IL-23, and IL-17 skewing T cell immunity to a Th17 pattern. In addition, the preferential Th17 immunity of TLR2(-/-) mice was associated with impaired expansion of regulatory CD4(+)CD25(+)FoxP3(+) T cells. This is the first study to show that TLR2 activation controls innate and adaptive immunity to P. brasiliensis infection. TLR2 deficiency results in increased Th17 immunity associated with diminished expansion of regulatory T cells and increased lung pathology due to unrestrained inflammatory reactions. The Journal of Immunology, 2009, 183: 1279-1290.
Resumo:
The mechanisms that govern the initial interaction between Paracoccidioides brasiliensis, a primary dimorphic fungal pathogen, and cells of the innate immunity need to be clarified. Our previous studies showed that Toll-like receptor 2 (TLR2) and TLR4 regulate the initial interaction of fungal cells with macrophages and the pattern of adaptive immunity that further develops. The aim of the present investigation was to assess the role of MyD88, an adaptor molecule used by TLRs to activate genes of the inflammatory response in pulmonary paracoccidioidomycosis. Studies were performed with normal and MyD88(-/-) C57BL/6 mice intratracheally infected with P. brasiliensis yeast cells. MyD88(-/-) macrophages displayed impaired interaction with fungal yeast cells and produced low levels of IL-12, MCP-1, and nitric oxide, thus allowing increased fungal growth. Compared with wild-type (WT) mice, MyD88(-/-) mice developed a more severe infection of the lungs and had marked dissemination of fungal cells to the liver and spleen. MyD88(-/-) mice presented low levels of Th1, Th2, and Th17 cytokines, suppressed lymphoproliferation, and impaired influx of inflammatory cells to the lungs, and this group of cells comprised lower numbers of neutrophils, activated macrophages, and T cells. Nonorganized, coalescent granulomas, which contained high numbers of fungal cells, characterized the severe lesions of MyD88(-/-) mice; the lesions replaced extensive areas of several organs. Therefore, MyD88(-/-) mice were unable to control fungal growth and showed a significantly decreased survival time. In conclusion, our findings demonstrate that MyD88 signaling is important in the activation of fungicidal mechanisms and the induction of protective innate and adaptive immune responses against P. brasiliensis.
Resumo:
Alveolar macrophages ( AM) are the first host cells to interact with Paracoccidioides brasiliensis (Pb), a primary human pathogen that causes severe pulmonary infections in Latin America. To better understand innate immunity in pulmonary paracoccidioidomycosis, we decided to study the fungicidal and secretory abilities of AM from resistant (A/J) and susceptible (B10.A) mice to infection. Untreated, IFN-gamma and IL-12 primed AM from B10. A and A/J mice were challenged with P. brasiliensis yeasts and cocultured for 72 h. B10. A macrophages presented an efficient fungicidal ability, were easily activated by both cytokines, produced high levels of nitric oxide ( NO), IL-12, and MCP-1 associated with low amounts of IL-10 and GM-CSF. In contrast, A/J AM showed impaired cytokine activation and fungal killing, secreted high levels of IL- 10 and GM-CSF but low concentrations of NO, IL- 12, and MCP-1. The fungicidal ability of B10. A but not of A/J macrophages was diminished by aminoguanidine treatment, although only the neutralization of TGF-beta restored the fungicidal activity of A/J cells. This pattern of macrophage activation resulted in high expression of MHC class II antigens by A/J cells, while B10. A macrophages expressed elevated levels of CD40. Unexpectedly, our results demonstrated that susceptibility to a fungal pathogen can be associated with an efficient innate immunity, while a deficient innate response can ultimately favor the development of a resistant pattern to infection. Moreover, our data suggest that different pathogen recognition receptors are used by resistant and susceptible hosts to interact with P. brasiliensis yeasts, resulting in divergent antigen presentation, acquired immunity, and disease outcomes.
Resumo:
A comparison of dengue virus (DENV) antibody levels in paired serum samples collected from predominantly DENV-naive residents in an agricultural settlement in Brazilian Amazonia (baseline seroprevalence, 18.3%) showed a seroconversion rate of 3.67 episodes/100 person-years at risk during 12 months of follow-up. Multivariate analysis identified male sex, poverty, and migration from extra-Amazonian states as significant predictors of baseline DENY seropositivity, whereas male sex, a history of clinical diagnosis of dengue fever, and travel to an urban area predicted subsequent seroconversion. The laboratory surveillance of acute febrile illnesses implemented at the study site and in a nearby town between 2004 and 2006 confirmed 11. DENV infections among 102 episodes studied with DENV IgM detection, reverse transcriptase-polymerise chain reaction, and virus isolation; DENV-3 was isolated. Because DENV exposure is associated with migration or travel, personal protection measures when visiting high-risk urban areas may reduce the incidence of DENV infection in this rural population.
Resumo:
The Duffy binding protein of Plasmodium vivax (DBP) is a critical adhesion ligand that participates in merozoite invasion of human Duffy-positive erythrocytes. A small outbreak of P. vivax malaria, in a village located in a non-malarious area of Brazil, offered us an opportunity to investigate the DBP immune responses among individuals who had their first and brief exposure to malaria. Thirty-three individuals participated in the five cross-sectional surveys, 15 with confirmed P. vivax infection while residing in the outbreak area (cases) and 18 who had not experienced malaria (non-cases). In the present study, we found that only 20% (three of 15) of the individuals who experienced their first P. vivax infection developed an antibody response to DBP; a secondary boosting can be achieved with a recurrent P. vivax infection. DNA sequences from primary/recurrent P. vivax samples identified a single dbp allele among the samples from the outbreak area. To investigate inhibitory antibodies to the ligand domain of the DBP (cysteine-rich region II, DBP(II)), we performed in vitro assays with mammalian cells expressing DBP(II) sequences which were homologous or not to those from the outbreak isolate. In non-immune individuals, the results of a 12-month follow-up period provided evidence that naturally acquired inhibitory antibodies to DBP(II) are short-lived and biased towards a specific allele.