930 resultados para Potato Carboxypeptidase Inhibitor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE:

Amyloid-ß (Aß) aggregation into synaptotoxic, prefibrillar oligomers is a major pathogenic event underlying the neuropathology of Alzheimer's disease (AD). The pharmacological and neuroprotective properties of a novel Aß aggregation inhibitor, SEN1269, were investigated on aggregation and cell viability and in test systems relevant to synaptic function and memory, using both synthetic Aß(1-42) and cell-derived Aß oligomers.
EXPERIMENTAL APPROACH:

Surface plasmon resonance studies measured binding of SEN1269 to Aß(1-42) . Thioflavin-T fluorescence and MTT assays were used to measure its ability to block Aß(1-42) -induced aggregation and reduction in cell viability. In vitro and in vivo long-term potentiation (LTP) experiments measured the effect of SEN1269 on deficits induced by synthetic Aß(1-42) and cell-derived Aß oligomers. Following i.c.v. administration of the latter, a complex (alternating-lever cyclic ratio) schedule of operant responding measured effects on memory in freely moving rats.
KEY RESULTS:

SEN1269 demonstrated direct binding to monomeric Aß(1-42) , produced a concentration-related blockade of Aß(1-42) aggregation and protected neuronal cell lines exposed to Aß(1-42) . In vitro, SEN1269 alleviated deficits in hippocampal LTP induced by Aß(1-42) and cell-derived Aß oligomers. In vivo, SEN1269 reduced the deficits in LTP and memory induced by i.c.v. administration of cell-derived Aß oligomers.
CONCLUSIONS AND IMPLICATIONS:

SEN1269 protected cells exposed to Aß(1-42) , displayed central activity with respect to reducing Aß-induced neurotoxicity and was neuroprotective in electrophysiological and behavioural models of memory relevant to Aß-induced neurodegeneration. It represents a promising lead for designing inhibitors of Aß-mediated synaptic toxicity as potential neuroprotective agents for treating AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lipopolysaccharide (LPS)-rich outer membrane of gram-negative bacteria provides a protective barrier that insulates these organisms from the action of numerous antibiotics. Breach of the LPS layer can therefore provide access to the cell interior to otherwise impermeant toxic molecules and can expose vulnerable binding sites for immune system components such as complement. Inhibition of LPS biosynthesis, leading to a truncated LPS molecule, is an alternative strategy for antibacterial drug development in which this vital cellular structure is weakened. A significant challenge for in vitro screens of small molecules for inhibition of LPS biosynthesis is the difficulty in accessing the complex carbohydrate substrates. We have optimized an assay of the enzymes required for LPS heptose biosynthesis that simultaneously surveys five enzyme activities by using commercially available substrates and report its use in a small-molecule screen that identifies an inhibitor of heptose synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An in vivo study in the laboratory rat model has been carried out to monitor morphological changes in adult Fasciola hepatica over a 4-day period resulting from co-treatment with triclabendazole (TCBZ) and ketoconazole (KTZ), a cytochrome P450 inhibitor. Rats were infected with the triclabendazole-resistant Oberon isolate of F. hepatica, dosed orally with triclabendazole at a dosage of 10mg/kg live weight and ketoconazole at a dosage of 10mg/kg live weight. Flukes were recovered at 24, 48, 72 and 96 h post-treatment (p.t.) and changes to fluke ultrastructure were assessed using transmission electron microscopy (TEM). Results showed an increase in the severity of changes to the fluke ultrastructure with time p.t. Swelling of the basal infolds and the associated mucopolysaccharide masses became more severe with time. Golgi complexes, if present, were greatly reduced in size and number by 96 h p.t., and sub-tegumental flooding was seen from the 72 h time-period onwards. Some sloughing of the tegumental covering over the spines was observed at 96 h p.t. The results demonstrated that the Oberon isolate is more sensitive to TCBZ action in the presence of KTZ than to TCBZ alone, reinforcing the idea that altered drug metabolism is involved in the resistance mechanism. Moreover, they support the concept that TCBZ+inhibitor combinations (aimed at altering drug pharmacokinetics and potentiating the action of TCBZ) could be used in the treatment of TCBZ-R populations of F. hepatica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the potential resurgence of post imperial “dependency theory” of the 1960s and 1970s. Suggesting that the initial premise of the theory was just – the article proposes the reworking of the theory in order to incorporate globalisation processes – namely the importance of global capital generated by Multi National Corporations. By considering that capital is now the “core” we have the idea of a much wider catchment of states “dependent” on global capital. Using Ireland as an example therefore, the article pursues the idea that a dependent state’s ability to implement CSR legislation is inhibited by the constraints of capital.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research Question: A20 is an LPS-inducible, cytoplasmic zinc finger protein, that inhibits TLR-activated NF-?B signalling by deubiquitinating TRAF6. A20 action is facilitated by complex formation with RNF11, Itch and TAX1BP1. This study investigates if the expression of A20 is altered in the chronically inflamed Cystic Fibrosis (CF) airway epithelium.

Methods: Nasal epithelial cells from CF patients (F508del homozygous), non-CF controls and immortalised epithelial cells (16HBE14o- and CFBE41o-) were stimulated with LPS. Cytoplasmic expression of A20 and expression of NF-?B subunits was analysed. Formation of the A20 ubiquitin editing complex was also investigated.

Results: In CFBE41o-, peak LPS-induced A20 expression was delayed compared with 16HBE14o- and fell significantly below basal levels 12-24 h after LPS stimulation. This was confirmed in primary CF airway cells. Additionally, a significant inverse relationship between A20 and p65 expression was observed. Inhibitor studies showed that A20 does not undergo proteasomal degradation in CFBE41o-. A20 interacted with TAX1BP1, RNF11 and TRAF6 in 16HBE14o- cells, but these interactions were not observed in CFBE41o-.

Conclusion: he expression of A20 is significantly altered in CF and important interactions with complex members and target proteins are lost, which may contribute to the state of chronic NF-?B-driven inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Administration of Na(+)/H(+) exchange isoform-1 (NHE-1) inhibitors before ischemia has been shown to attenuate myocardial infarction in several animal models of ischemia-reperfusion injury. However, controversy still exists as to the efficacy of NHE-1 inhibitors in protection of myocardial infarction when administered at the onset of reperfusion. Furthermore, the efficacy of NHE-1 inhibition in protection of skeletal muscle from infarction (necrosis) has not been studied. This information has potential clinical applications in prevention or salvage of skeletal muscle from ischemia-reperfusion injury in elective and trauma reconstructive surgery. The objective of this research project is to test our hypothesis that the NHE-1 inhibitor cariporide is effective in protection of skeletal muscle from infarction when administered at the onset of sustained ischemia or reperfusion and to study the mechanism of action of cariporide. In our studies, we observed that intravenous administration of cariporide 10 min before ischemia (1 or 3 mg/kg) or reperfusion (3 mg/kg) significantly reduced infarction in pig latissimus dorsi muscle flaps compared with the control, when these muscle flaps were subjected to 4 h of ischemia and 48 h of reperfusion (P <0.05; n = 5 pigs/group). Both preischemic and postischemic cariporide treatment (3 mg/kg) induced a significant decrease in muscle myeloperoxidase activity and mitochondrial-free Ca(2+) content and a significant increase in muscle ATP content within 2 h of reperfusion (P <0.05; n = 4 pigs/group). Preischemic and postischemic cariporide treatment (3 mg/kg) also significantly inhibited muscle NHE-1 protein expression within 2 h of reperfusion after 4 h of ischemia, compared with the control (P <0.05; n = 3 pigs/group). These observations support our hypothesis that cariporide attenuates skeletal muscle infarction when administered at the onset of ischemia or reperfusion, and the mechanism involves attenuation of neutrophil accumulation and mitochondrial-free Ca(2+) overload and preservation of ATP synthesis in the early stage of reperfusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic lung diseases such as cystic fibrosis and emphysema are characterized by a protease burden, an infective process and a dominant proinflammatory profile. Secretory leucoprotease inhibitor (SLPI) is a prominent innate immune protein of the respiratory tract, possessing serine protease inhibitor activity, antibacterial activity, and anti-inflammatory/immunomodulatory activity. In the course of this review, the authors highlight the findings from a range of studies that illustrate the multiple functions of SLPI and its role in the resolution of the immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic lung disease is one of the most common causes of death and disability worldwide. This group of diseases is characterized by a protease burden, an infective process and a dominant pro-inflammatory profile. While SLPI (secretory leucoprotease inhibitor) was initially identified as a serine protease inhibitor, it has since been shown that SLPI possesses other properties distinct from those associated with its antiprotease capabilities that play an important role in protecting the host from infection and injury. In the course of this review, we will highlight the findings from a range of studies that illustrate the multiple functions of SLPI and its role in the resolution of the immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secretory leucoprotease inhibitor (SLPI) is a nonglycosylated protein produced by epithelial cells. In addition to its antiprotease activity, SLPI has been shown to exhibit antiinflammatory properties, including down-regulation of tumor necrosis factor alpha expression by lipopolysaccharide (LPS) in macrophages and inhibition of nuclear factor (NF)-kappaB activation in a rat model of acute lung injury. We have previously shown that SLPI can inhibit LPS-induced NF-kappaB activation in monocytic cells by inhibiting degradation of IkappaBalpha without affecting the LPS-induced phosphorylation and ubiquitination of IkappaBalpha. Here, we present evidence to show that upon incubation with peripheral blood monocytes (PBMs) and the U937 monocytic cell line, SLPI enters the cells, becoming rapidly localized to the cytoplasm and nucleus, and affects NF-kappaB activation by binding directly to NF-kappaB binding sites in a site-specific manner. SLPI can also prevent p65 interaction with the NF-kappaB consensus region at concentrations commensurate with the physiological nuclear levels of SLPI and p65. We also demonstrate the presence of SLPI in nuclear fractions of PBMs and alveolar macrophages from individuals with cystic fibrosis and community-acquired pneumonia. Therefore, SLPI inhibition of NF-kappaB activation is mediated, in part, by competitive binding to the NF-kappaB consensus-binding site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we investigate the skin secretion of the Madagascan Tomato Frog, Dyscophus guineti, which is characterized by its peculiarly adhesive and viscous nature, with a view toward the function of the member of the Kunitz/bovine pancreatic trypsin inhibitor family (BPTI) it is known to contain. Using “shotgun” cloning of a skin secretion-derived cDNA library, we obtained the full-length sequence of the respective precursor that encodes this trypsin inhibitor. Furthermore, we demonstrated that this enzyme has inhibitory activity against trypsin, but not against thrombin, and also has no antimicrobial activity. Moreover, we confirm that it appears to be the only bioactive peptide in the skin secretion of this species. Using these observations, we attempt to posit a role for this inhibitor. In particular, we hypothesize that the trypsin inhibitor in D. guineti (and possibly other microhylid frogs) maintains the soluble state of the skin secretion during storage in the glands. Upon discharge of the secretion, the trypsin inhibitor, which occurs in low concentrations, can no longer prevent the polymerisation process of other yet unidentified skin proteins, thereby resulting in the conversion of the secretion to its final glue-like state. Thus, the major defensive value of the skin secretion appears to be mechanical, impeding ingestion through a combination of adhesion and the body inflation typical for some microhylid frogs rather than chemical through antimicrobial activity or toxicity.