962 resultados para Plant mineral nutrition
Resumo:
2001
Resumo:
Kingston-Smith, A. H., Merry, R. J., Leemans, D. K., Thomas, Howard, Theodorou, M. K. (2005). Evidence in support of a role for plant-mediated proteolysis in the rumens of grazing animals. British Journal of Nutrition, 93(1), 73-79. Sponsorship: DEFRA / BBSRC RAE2008
Resumo:
The role of antioxidants in the pathogenesis of reflux esophagitis (RE), Barrett's esophagus (BE), and esophageal adenocarcinoma (EAC) remains unknown. We evaluated the associations among dietary antioxidant intake and these diseases. We performed an assessment of dietary antioxidant intake in a case control study of RE (n = 219), BE (n = 220), EAC (n = 224), and matched population controls (n = 256) (the Factors Influencing the Barrett's Adenocarcinoma Relationship study) using a modification of a validated FFQ. We found that overall antioxidant index, a measure of the combined intake of vitamin C, vitamin E, total carotenoids, and selenium, was associated with a reduced risk of EAC [odds ratio (OR) = 0.57; 95% CI = 0.33-0.98], but not BE (OR = 0.95; 95% CI = 0.53-1.71) or RE (OR = 1.60; 95% CI = 0.86-2.98), for those in the highest compared with lowest category of intake. Those in the highest category of vitamin C intake had a lower risk of EAC (OR = 0.37; 95% CI = 0.21-0.66; P-trend = 0.001) and RE (OR = 0.46; 95% CI = 0.24-0.90; P-trend = 0.03) compared with those in the lowest category. Vitamin C intake was not associated with BE, and intake of vitamin E, total carotenoids, zinc, copper, or selenium was not associated with EAC, BE, or RE. In conclusion, the overall antioxidant index was associated with a reduced risk of EAC. Higher dietary intake of vitamin C was associated with a reduced risk of EAC and RE. These results suggest that antioxidants may play a role in the pathogenesis of RE and EAC and may be more important in terms of progression rather than initiation of the disease process.
Dietary patterns and bone mineral status in young adults: the Young Hearts Project, Northern Ireland
Resumo:
Studies of individual nutrients or foods have revealed much about dietary influences on bone. Multiple food or nutrient approaches, such as dietary pattern analysis, could offer further insight but research is limited and largely confined to older adults. We examined the relationship between dietary patterns, obtained by a posteriori and a priori methods, and bone mineral status (BMS; collective term for bone mineral content (BMC) and bone mineral density (BMD)) in young adults (20-25 years; n 489). Diet was assessed by 7 d diet history and BMD and BMC were determined at the lumbar spine and femoral neck (FN). A posteriori dietary patterns were derived using principal component analysis (PCA) and three a priori dietary quality scores were applied (dietary diversity score (DDS), nutritional risk score and Mediterranean diet score). For the PCA-derived dietary patterns, women in the top compared to the bottom fifth of the 'Nuts and Meat' pattern had greater FN BMD by 0.074 g/cm(2) (P=0.049) and FN BMC by 0.40 g (P=0.034) after adjustment for confounders. Similarly, men in the top compared to the bottom fifth of the 'Refined' pattern had lower FN BMC by 0.41 g (P-0.049). For the a priori DDS, women in the top compared to the bottom third had lower FN BMD by 0.05 g/cm(2) after adjustments (P=0.052), but no other relationships with BMS were identified. In conclusion, adherence to a 'Nuts and Meat' dietary pattern may be associated with greater BMS in young women and a 'Refined' dietary pattern may be detrimental for bone health in young men.
Resumo:
The response of arsenate and non-tolerant Holcus lanatus L. phenotypes, where tolerance is achieved through suppression of high affinity phosphate/arsenate root uptake, was investigated under different growth regimes to investigate why there is a polymorphism in tolerance found in populations growing on uncontaminated soil. Tolerant plants screened from an arsenic uncontaminated population differed, when grown on the soil from the populations origin, from non-tolerants, in their biomass allocation under phosphate fertilization: non-tolerants put more resources into tiller production and down regulated investment in root production under phosphate fertilization while tolerants tillered less effectively and did not alter resource allocation to shoot biomass under phosphate fertilization. The two phenotypes also differed in their shoot mineral status having higher concentrations of copper, cadmium, lead and manganese, but phosphorus status differed little, suggesting tight homeostasis. The polymorphism was also widely present (40%) in other wild grass species suggesting an important ecological role for this gene that can be screened through plant root response to arsenate.
Resumo:
Uptake kinetics of arsenate were determined in arsenate tolerant and non-tolerant clones of the grass Deschampsia cespitosa under differing root phosphorus status to investigate the mechanism controlling the suppression of arsenate influx observed in tolerant clones. Influx was always lower in tolerants compared to non-tolerants. Short term influx of arsenate by the high affinity uptake system in both tolerant clones was relatively insensitive to root phosphorus status. This was in contrast to the literature where the regulation of the phosphate (arsenate) uptake system is normally much more responsive to plant phosphorus status. The low affinity uptake system in both tolerant and non-tolerant clones, unlike the high affinity uptake system, was more closely regulated by root phosphate status and was repressed to a much greater degree under increasing root phosphorus levels than the high affinity system. © 1994 Kluwer Academic Publishers.
Resumo:
Biomass and phosphorus allocation were determined in arsenate tolerant and non-tolerant clones of the grass Holcus lanatus L. in both solution culture and in soil. Arsenate is a phosphate analogue and is taken up by the phosphate uptake system. Tolerance to arsenate in this grass is achieved by suppression of arsenate (and phosphate) influx. When clones differing in their arsenate tolerance were grown in solution culture with a range of phosphate levels, a tolerant clone did not fare as well as a non-tolerant at low levels of phosphate nutrition in that it had reduced shoot biomass production, increased biomass allocation to the roots and lower shoot phosphorus concentration. At a higher level of phosphate nutrition there was little or no difference in these parameters, suggesting that differences at lower levels of phosphate nutrition were due solely to differences in the rates of phosphate accumulation. In experiments in sterile soil (potting compost) the situation was more complicated with tolerant plants having lower growth rates but higher phosphorus concentrations. The gene for arsenate tolerance is polymorphic in arsenate uncontaminated populations. When phosphorus concentration of tolerant phenotypes was determined in one such population, again tolerants had a higher phosphorus status than non-tolerants. Tolerants also had higher rates of vesicular-arbuscular mycorrhizal (VAM) infection. The ecological implications of these results are that it appears that suppression of the high affinity uptake system, is at least in part, compensated by increased mycorrhizal infection. © 1994 Kluwer Academic Publishers.
Resumo:
Velvetgrass (Holcus lanatus L.), also known as Yorkshire fog grass, has evolved tolerance to high levels of arsenate, and this adaptation involves reduced accumulation of arsenate through the suppression of the high affinity phosphate-arsenate uptake system. To determine the role of P nutrition in arsenate tolerance, inhibition kinetics of arsenate influx by phosphate were determined. The concentration of inhibitor required to reduce maximum influx (V(max)) by 50%, K1, of phosphate inhibition of arsenate influx was 0.02 mol m-3 in both tolerant and nontolerant clones. This was compared with the concentration where influx is 50% of maximum, a K(m), for arsenate influx of 0.6 mol m-3 for tolerants and 0.025 mol m-3 for nontolerants and, therefore, phosphate was much more effective at inhibiting arsenate influx in tolerant genotypes. The high affinity phosphate uptake system is inducible under low plant phosphate status, this increasing plant phosphate status should increase tolerance by decreasing arsenate influx. Root extension in arsenate solutions of tolerant and nontolerant tillers grown under differing phosphate nutritional regimes showed that indeed, increased plant P status increased the tolerance to arsenate of both tolerant and nontolerant clones. That plant P status increased tolerance again argues that P nutrition has a critical role in arsenate tolerance. To determine if short term flux and solution culture studies were relevant to As and P accumulation in soils, soil and plant material from a range of As contaminated sites were analyzed. As predicted from the short-term competition studies, P was accumulated preferentially to As in arsenate tolerant clones growing on mine spoil soils even when acid extractable arsenate in the soils was much greater than acid extractable phosphate. Though phosphate was much more efficient at competing with arsenate for uptake, plants growing on arsenate contaminated land still accumulated considerable amounts of As. Plants from the differing habitats showed large variation in plant phosphate status, pasture plants having much higher P levels than plants growing on the most contaminated mine spoil soils. The selectivity of the phosphate-arsenate uptake system for phosphate compared with arsenate, coupled with the suppression of this uptake system enabled tolerant clones of the grass velvetgrass to grow on soils that were highly contaminated with arsenate and deficient in phosphate.