991 resultados para Plancton--Norvège--Svalbard
Resumo:
Ferromanganese concretions from ten stations in the Barents Sea have been analysed for 24 elements. The deposits occur as discoidal and flat concretions and as coatings, in the latter case on lithified or detrital material or as extensive pavements on the Svalbard shelf. The concretions are compositionally similar to Baltic concretions but differ considerably from deep-ocean nodules, particularly in Cu, Ni and Co contents. Statistical analyses reveal distinct correlations between Mn, Na, Ba, Ni and Cu; the Mn-rich coatings showed enrichment of Mo, Zn and possibly Co in a Mn-phase. The iron phase holds high concretions of P and As. Two iron-rich concretions with high contents of P, Ca, Sr, Y, Yb and La were found east and northeast of Spitsbergen Banken, probably indicating upwelling of nutrient-rich, cold polar water along the Svalbard shelf.
Resumo:
In contrast to numerous studies on the biomass of marine microphytobenthos from temperate coastal ecosystems, little is known from polar regions. Therefore, microphytobenthos biomass was measured at several coastal sites in Arctic Kongsfjorden (Spitsbergen) during the polar summer (June-August 2006). On sandy sediments, chla varied between 8 and 200 mg/m**2 and was related to water depth, current/wave exposure and geographical location. Biomass was rather independent of abiotic parameters such as sediment properties, salinity, temperature or light availability. At three stations, sediments at water depths of 3-4, 10, 15, 20 and 30 m were investigated to evaluate the effect of light availability on microalgae. Significant differences in distribution patterns of biomass in relation to deeper waters >10 m were found. The productive periods were not as distinct as phytoplankton blooms. Only at 3-4 m water depth at all three stations were two- to threefold increases of biomass measured during the investigation period. Hydrodynamic conditions seemed to be the driving force for differences in sediment colonisation by benthic microalgae. In spite of the extreme Arctic environmental conditions for algal growth, microphytobenthos biomass was comparable to marine temperate waters.
Resumo:
Late Quaternary sediment yields from the Isfjorden drainage area (7327 km**2), a high arctic region on Svalbard characterized by an alpine landscape, have been reconstructed by using seismic stratigraphy supported by sediment core analysis. The sediments that accumulated in the fjord during and since deglaciation can be divided into three stratigraphic units. The volumes of these units were determined and converted into sediment yield rates averaged over the drainage basin. During deglaciation, 13 to 10 ka, the sediment yield was ~860 tons(t)/km**2/yr. In the early Holocene it decreased to 190 t/km**2/yr, and then increased to 390t/km**2/yr during the late Holocene Little Ice Age. When normalized to the approximate glacierized area, these rates correspond to a sediment yield of ~800 t/km**2/yr . Sediment yield from non-glacierized parts of the drainage is estimated to be 35 t/km**2/yr. At times when ice advanced to the shelf edge, sediment was scoured from the fjord and deposited on the outer shelf and in a well-defined deep sea fan. Between 200 ka and 13 ka, 328 km**3 of sediment accumulated here, corresponding to a mean sediment yield rate of 335 t/km**2/yr. This is broadly consistent with calculations based on the above rates of sediment yield in glacierized and non-glacierized areas, and on estimates, based on glacial geology, of the temporal variation in degree of glacierization over the past 200 kyr. These figures indicate that much of the glacigenic sediment on the shelf and slope was eroded from the uplands of Svalbard by small glaciers during interstadials and interglacials. The sediments were temporarily stored in the fjord prior to redeposition on the shelf and slope during ice sheet advance. Taken into consideration, such redisposition of pre-eroded material will reduce estimates of primary ice sheet erosion rate.
Resumo:
During two expeditions of the R.V. "Polarstern" to the Arctic Ocean, pack ice and under-ice water samples were collected during two different seasons: late summer (September 2002) and late winter (March/April 2003). Physical and biological properties of the ice were investigated to explain seasonal differences in species composition, abundance and distribution patterns of sympagic meiofauna (in this case: heterotrophs >20 µm). In winter, the ice near the surface was characterized by extreme physical conditions (minimum ice temperature: -22°C, maximum brine salinity: 223, brine volume: <=5%) and more moderate conditions in summer (minimum ice temperature: -5.6°C, maximum brine salinity: 94, most brine volumes: >=5%). Conditions in the lowermost part of the ice did not differ to a high degree between summer and winter. Chlorophyll a concentrations (chl a) showed significant differences between summer and winter: during winter, concentrations were mostly <1.0 µg chl a/l, while chl a concentrations of up to 67.4 µmol/l were measured during summer. The median of depth-integrated chl a concentration in summer was significantly higher than in winter. Integrated abundances of sympagic meiofauna were within the same range for both seasons and varied between 0.6 and 34.1×103 organisms /m**2 in summer and between 3.7 and 24.8×10**3 organisms /m**2 in winter. With regard to species composition, a comparison between the two seasons showed distinct differences: while copepods (42.7%) and rotifers (33.4%) were the most abundant sea-ice meiofaunal taxa during summer, copepod nauplii dominated the community, comprising 92.9% of the fauna, in winter. Low species abundances were found in the under-ice water, indicating that overwintering of the other sympagic organisms did not take place there, either. Therefore, their survival strategy over the polar winter remains unclear.
Resumo:
Samples (blood or tissue fluid) from 594 arctic foxes (Alopex lagopus), 390 Svalbard reindeer (Rangifer tarandus platyrhynchus), 361 sibling voles (Microtus rossiaemeridionalis), 17 walruses (Odobenus rosmarus), 149 barnacle geese (Branta leucopsis), 58 kittiwakes (Rissa tridactyla), and 27 glaucous gulls (Larus hyperboreus) from Svalbard and nearby waters were assayed for antibodies against Toxoplasma gondii using a direct agglutination test. The proportion of seropositive animals was 43% in arctic foxes, 7% in barnacle geese, and 6% (1 of 17) in walruses. There were no seropositive Svalbard reindeer, sibling voles, glaucous gulls, or kittiwakes. The prevalence in the arctic fox was relatively high compared to previous reports from canid populations. There are no wild felids in Svalbard and domestic cats are prohibited, and the absence of antibodies against T gondii among the herbivorous Svalbard reindeer and voles indicates that transmission of the parasite by oocysts is not likely to be an important mechanism in the Svalbard ecosystem. Our results suggest that migratory birds, such as the barnacle goose, may be the most important vectors bringing the parasite to Svalbard. In addition to transmission through infected prey and carrion, the age-seroprevalence profile in the fox population suggests that their infection levels are enhanced by vertical transmission.
Resumo:
Multi-channel ground-penetrating radar is used to investigate the late-summer evolution of the thaw depth and the average soil water content of the thawed active layer at a high-arctic continuous permafrost site on Svalbard, Norway. Between mid of August and mid of September 2008, five surveys have been conducted over transect lengths of 130 and 175 m each. The maximum thaw depths range from 1.6 m to 2.0 m, so that they are among the deepest thaw depths recorded for Svalbard so far. The thaw depths increase by approximately 0.2 m between mid of August and beginning of September and subsequently remain constant until mid of September. The thaw rates are approximately constant over the entire length of the transects within the measurement accuracy of about 5 to 10 cm. The average volumetric soil water content of the thawed soil varies between 0.18 and 0.27 along the investigated transects. While the measurements do not show significant changes in soil water content over the first four weeks of the study, strong precipitation causes an increase in average soil water content of up to 0.04 during the last week. These values are in good agreement with evapotranspiration and precipitation rates measured in the vicinity of the the study site. While we cannot provide conclusive reasons for the detected spatial variability of the thaw depth at the study site, our measurements show that thaw depth and average soil water content are not directly correlated. The study demonstrates the potential of multi-channel ground-penetrating radar for mapping thaw depth in permafrost areas. The novel non-invasive technique is particularly useful when the thaw depth exceeds 1.5 m, so that it is hardly accessible by manual probing. In addition, multi-channel ground-penetrating radar holds potential for mapping the latent heat content of the active layer and for estimating weekly to monthly averages of the ground heat flux during the thaw period.
Resumo:
Differences in bioaccumulation of persistent organic pollutants (POPs) between fjords characterized by different water masses were investigated by comparing POP concentrations, patterns and bioaccumulation factors (BAFs) in seven species of zooplankton from Liefdefjorden (Arctic water mass) and Kongsfjorden (Atlantic water mass), Svalbard, Norway. No difference in concentrations and patterns of POPs was observed in seawater and POM; however higher concentrations and BAFs for certain POPs were found in species of zooplankton from Kongsfjorden. The same species were sampled in both fjords and the differences in concentrations of POPs and BAFs were most likely due to fjord specific characteristics, such as ice cover and timing of snow/glacier melt. These confounding factors make it difficult to conclude on water mass (Arctic vs. Atlantic) specific differences and further to extrapolate these results to possible climate change effects on accumulation of POPs in zooplankton. The present study suggests that zooplankton do biomagnify POPs, which is important for understanding contaminant uptake and flux in zooplankton, though consciousness regarding the method of evaluation is important.
Resumo:
The aim of this study was to examine the plasma concentrations and prevalence of polychlorinated biphenyls (PCBs) and hydroxylated PCB-metabolites (OH-PCBs) in polar bear (Ursus maritimus) mothers (n = 26) and their 4 months old cubs-of-the-year (n = 38) from Svalbard to gain insight into the mother-cub transfer, biotransformation and to evaluate the health risk associated with the exposure to these contaminants. As samplings were performed in 1997/1998 and 2008, we further investigated the differences in levels and pattern of PCBs between the two sampling years. The plasma concentrations of Sum(21)PCBs (1997/1998: 5710 ± 3090 ng/g lipid weight [lw], 2008: 2560±1500 ng/g lw) and Sum(6)OH-PCBs (1997/1998: 228 ± 60 ng/g wet weight [ww], 2008: 80 ± 38 ng/g ww) in mothers were significantly lower in 2008 compared to in 1997/1998. In cubs, the plasma concentrations of Sum(21)PCBs (1997/1998: 14680 ± 5350 ng/g lw, 2008: 6070 ± 2590 ng/g lw) and Sum(6)OH-PCBs (1997/1998: 98 ± 23 ng/g ww, 2008: 49 ± 21 ng/g ww) were also significantly lower in 2008 than in 1997/1998. Sum(21)PCBs in cubs was 2.7 ± 0.7 times higher than in their mothers. This is due to a significant maternal transfer of these contaminants. In contrast, Sum(6)OH-PCBs in cubs were approximately 0.53 ± 0.16 times the concentration in their mothers. This indicates a lower maternal transfer of OH-PCBs compared to PCBs. The majority of the metabolite/precursor-ratios were lower in cubs compared to mothers. This may indicate that cubs have a lower endogenous capacity to biotransform PCBs to OH-PCBs than polar bear mothers. Exposure to PCBs and OH-PCBs is a potential health risk for polar bears, and the levels of PCBs and OH-PCBs in cubs from 2008 were still above levels associated with health effects in humans and wildlife.
Resumo:
Breeding in the high Arctic is time constrained and animals should therefore start with their annual reproduction as early as possible. To allow for such early reproduction in migratory birds, females arrive at the breeding grounds either with body stores or they try to rapidly develop their eggs after arrival using local resources. Svalbard breeding barnacle geese Branta leucopsis have to fly non-stop for about 1100 km from their last continental staging site to the archipelago making the transport of body stores costly. However, environmental conditions at the breeding grounds are highly unpredictable favouring residual body stores allowing for egg production after arrival on the breeding grounds. We estimated the reliance on southern continental resources, i.e. body stores for egg formation, in barnacle geese using stable isotope ratios in the geese's forage along the flyway and in their eggs. Females adopted mixed breeding strategies by using southern resources as well as local resources to varying extents for egg formation. Southern capital in lipid-free yolk averaged 41% (range: 23-65%), early laid eggs containing more southern capital than eggs laid late in the season. Yolk lipids and albumen did not vary over time and averaged a southern capital proportion of 54% (range: 32-73%) and 47% (range: 25-88%), respectively. Our findings indicate that female geese vary the use of southern resources when synthesizing their eggs and this allocation also varies among egg tissues. Their mixed and flexible use of distant and local resources potentially allows for adaptive adjustments to environmental conditions encountered at the archipelago just before breeding.
Resumo:
Petrological and geochemical data obtained on Neogene magmatism restricted to a deep fault in Andree Land at Spitsbergen Island, which was related to the overall restyling of the Arctic territory at 25-20 Ma, indicate that the derivation of the Neogene magmas was significantly affected by the continental pyroxenite mantle. The Neogene basalts are noted for a radiogenic isotopic composition of Pb (207Pb/204Pb= 15.5-15.55, 206Pb/204Pb = 18.4-18.6, 208Pb/204Pb = 38.4-38.6) and Sr (87Sr/86Sr = 0.7038-0.7048) at low 143Nd/144Nd = 0.5129. Melts of this type are the extremely enriched end member of the isotopic mixing of a depleted and enriched sources and determine a geochemical trend that passes through the compositions of alkaline magmas from Quaternary volcanoes at Spitsbergen and weakly enriched tholeiites of the Knipovich Ridge, which started to develop simultaneously with the onset of Neogene magmatism in the western part of Spitsbergen. The composition of the liquidus olivine (which is rich in NiO) indicates that melting occurred in the olivine-free mantle. Our data thus testify that a significant role in the genesis of the Neogene magmas was played by continental pyroxenite mantle.
Resumo:
Methane hydrate is an ice-like substance that is stable at high-pressure and low temperature in continental margin sediments. Since the discovery of a large number of gas flares at the landward termination of the gas hydrate stability zone off Svalbard, there has been concern that warming bottom waters have started to dissociate large amounts of gas hydrate and that the resulting methane release may possibly accelerate global warming. Here, we can corroborate that hydrates play a role in the observed seepage of gas, but we present evidence that seepage off Svalbard has been ongoing for at least three thousand years and that seasonal fluctuations of 1-2°C in the bottom-water temperature cause periodic gas hydrate formation and dissociation, which focus seepage at the observed sites.
Resumo:
Mr. G. Ranson found a small collection of plankton in Nha Trang (Vietnam), during a mission in the Far East. The samples were harvested in the Bay of Cauda at a water depth of 15-20 m. The author examined a number of samples kept in formalin, extremely rich in diatoms and in good condition. The group of pelagic copepods has been the most carefully studied.
Resumo:
High-resolution swath-bathymetry data from inner Kongsfjorden, Svalbard, reveal characteristic landform assemblages formed during and after surges of tidewater glaciers, and provide new insights into the dynamics of surging glaciers. Glacier front oscillations and overriding related to surge activity lead to the formation of overridden moraines, glacial lineations of two types, terminal moraines, associated debris lobes and De Geer moraines. In contrast to submarine landform assemblages from other Svalbard fjords, the occurrence of two kinds of glacial lineations and the presence of De Geer moraines suggest variability in the landforms produced by surge-type tidewater glaciers. All the landforms in inner Kongsfjorden were deposited during the last c. 150 years. Lithological and acoustic data from the innermost fjord reveal that suspension settling from meltwater plumes as well as ice rafting are dominant sedimentary processes in the fjord, leading to the deposition of stratified glacimarine muds with variable numbers of clasts. Reworking of sediments by glacier surging results in the deposition of sediment lobes containing massive glacimarine muds. Two sediment cores reveal minimum sediment accumulation rates related to the Kongsvegen surge from 1948; these were 30 cm a-1 approximately 2.5 km beyond the glacier front shortly after surge termination, and rapidly dropped to an average rate of 1.8 cm a-1 in ∼1950, during glacier retreat.
Resumo:
We acquired coincident marine controlled-source electromagnetic (CSEM), high-resolution seismic reflection and ocean-bottom seismometer (OBS) data over an active pockmark in the crest of the southern part of the Vestnesa Ridge, to estimate fluid composition within an underlying fluid-migration chimney. Synthetic model studies suggest resistivity obtained from CSEM data can resolve gas or hydrate saturation greater than 5% within the chimney. Acoustic chimneys imaged by seismic reflection data beneath the pockmark and on the ridge flanks, were found to be associated with high-resistivity anomalies (+2-4 m). High-velocity anomalies (+0.3 km/s), within the gas hydrate stability zone (GHSZ) and low-velocity anomalies (-0.2 km/s) underlying the GHSZ, were also observed. Joint analysis of the resistivity and velocity anomaly indicates pore saturation of up to 52% hydrate with 28% free gas, or up to 73% hydrate with 4% free gas, within the chimney beneath the pockmark assuming a non-uniform and uniform fluid distribution respectively. Similarly, we estimate up to 30% hydrate with 4% free gas or 30% hydrate with 2% free gas within the pore space of the GHSZ outside the central chimney assuming a non-uniform and uniform fluid distribution respectively. High levels of free-gas saturation in the top part of the chimney are consistent with episodic gas venting from the pockmark.