804 resultados para Pixel-based Classification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes the signals captured during impacts and vibrations of a mechanical manipulator. The Fourier Transform of eighteen different signals are calculated and approximated by trendlines based on a power law formula. A sensor classification scheme based on the frequency spectrum behavior is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 2013

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality of life is a concept influenced by social, economic, psychological, spiritual or medical state factors. More specifically, the perceived quality of an individual's daily life is an assessment of their well-being or lack of it. In this context, information technologies may help on the management of services for healthcare of chronic patients such as estimating the patient quality of life and helping the medical staff to take appropriate measures to increase each patient quality of life. This paper describes a Quality of Life estimation system developed using information technologies and the application of data mining algorithms to access the information of clinical data of patients with cancer from Otorhinolaryngology and Head and Neck services of an oncology institution. The system was evaluated with a sample composed of 3013 patients. The results achieved show that there are variables that may be significant predictors for the Quality of Life of the patient: years of smoking (p value 0.049) and size of the tumor (p value < 0.001). In order to assign the variables to the classification of the quality of life the best accuracy was obtained by applying the John Platt's sequential minimal optimization algorithm for training a support vector classifier. In conclusion data mining techniques allow having access to patients additional information helping the physicians to be able to know the quality of life and produce a well-informed clinical decision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. METHOD: The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. RESULTS: The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RESUMO: As doenças mentais são comuns, universais e associadas a uma significativa sobrecarga pessoal, familiar, social e económica. Os Serviços de Saúde Mental devem abordar de forma adequada as necessidades dos pacientes e familiares tanto ao nível clínico como também ao nível social. O presente estudo foi realizado num período de grande transformação nos sistemas de saúde primário e de saúde mental em Portugal, num Departamento de Psiquiatria desenvolvido com base nos princípios da OMS. Os objectivos incluem a caracterização: 1) das Unidades Funcionais do Departamento; 2) dos pacientes internados pela primeira vez no internamento de agudos; 3) da utilização dos serviços nas equipas comunitárias após a alta; e 4) da avaliação de alguns dos indicadores de qualidade do departamento, com recurso ao modelo de Donabedian sobre a articulação entre a Estrutura-Processo-Resultados. Metodologia: Foi escolhido um estudo de coorte retrospectivo. Todos os pacientes internados pela primeira vez entre 2008 e 2010 foram incluídos no estudo. Os seus processos clínicos e a base de dados do hospital onde são registados todos os contactos que estes tiveram com os profissionais de saúde mental foram revistos de forma a obter dados sociodemográficos e clínicos, durante o período do estudo e após a alta. Os instrumentos utilizados foram o WHO-ICMHC (Classificação Internacional de Cuidados de Saúde Mental), para caracterizar o Departamento, o AIESMP (Avaliação Inicial de Enfermagem em Saúde Mental e Psiquiatria) para recolha dos dados sociodemográficos, e o VSSS (Escala de Satisfação com os Serviços de Verona) de forma a avaliar a satisfação dos pacientes em relação aos cuidados recebidos. A análise estatística incluiu a análise descritiva, quantitativa e qualitativa dos dados. Resultados: As Unidades Funcionais do Departamento revelaram níveis elevados de articulação e consistência com as necessidades de cuidados psiquiátricos e reabilitação psicossocial dos pacientes. Os 543 pacientes admitidos pela primeira vez eram maioritariamente (56.9%) mulheres, caucasianas (81.2%), com diagnóstico de perturbações do humor (66.3%), internadas voluntariamente (59.7%), e uma idade média de 45.1 anos. Estas eram significativamente mais velhas, mais frequentemente empregadas, casadas/coabitar e tinham uma prevalência mais elevada de perturbações do humor, comparativamente aos homens. O internamento compulsivo era mais significativo nos homens (54.7%). A taxa de abandono no pós-alta (4.2%) e a taxa de reinternamentos (2.9%) na quinzena após a alta revelaram-se inferiores aos padrões na literatura internacional. De forma global, a satisfação dos pacientes com os cuidados de saúde mental foi positiva. Conclusões: Os cuidados prestados mostraram-se eficazes, adaptados e baseados nas necessidades e problemas específicos dos pacientes. A continuidade e a abrangência de cuidados foram difundidos e mantidos ao longo do processo de cuidados. Este Departamento pode ser considerado um exemplo de como proporcionar tratamento digno e eficiente, e uma referência para futuros serviços de psiquiatria.-------------- ABSTRACT: Mental health disorders are common, universal, and associated with heavy personal, family, social and economic burden. Mental health services should be aimed at adequately addressing patients’ and families’ needs at clinical and social level. The current study was carried out at a time of great transformation in the health and mental health systems in Portugal, in a Psychiatric Department developed taking in consideration the WHO principles. The objectives included characterizing: 1) the Psychiatric Department’s different units; 2) the patients admitted for the first time to the inpatient unit; 3) their use of community mental health services after discharge; and 4) assessing some of the department’s quality indicators, with resource to Donabedian’s Structure-Process-Outcome model. Methodology: A retrospective cohort design was chosen. All the firstly admitted patients in the period between 2008 and 2010 were included in the study. Their clinical records and the hospital’s database which registers all of the contacts the patients had with the mental health professionals during the study period, were reviewed to retrieve sociodemographic and clinical data and information on follow-up. The instruments used were the WHO International Classification of Mental Health Care (ICMHC) to characterize the department, the Initial Nurses’ Assessment in Mental Health and Psychiatry (AIESMP) for patients’ sociodemographic data, and the Verona Service Satisfaction Scale (VSSS) to assess patients’ satisfaction with care received. Statistical analysis included descriptive, quantitative and qualitative analysis of the data. Results: The Department’s Functional units revealed high levels of articulation, and were consistent with patients’ needs for psychiatric care and psychosocial rehabilitation. The 543 patients firstly admitted were mainly (56.9%) female, Caucasian (81.2%), diagnosed with mood disorders (66.3%), voluntarily admitted (59.7%), and with a mean age of 45.1 years. Female patients were significantly older, more frequently employed, married/cohabiting and had a higher prevalence of mood disorders when compared to males. Involuntary admission was more significant in males (54.7%). Dropout rates during follow-up (4.2%) and readmission rates (2.9%) in the fortnight following discharge were lower than standards in international literature. Overall patients’ satisfaction with mental health care was positive. Conclusions: The care delivered was effective, adapted and based on the patients’ specific needs and problems. Continuity and comprehensiveness of care was endorsed and maintained throughout the care process. This department may be considered an example of both humane and effective treatment, and a reference for future psychiatric care.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic Liquids (ILs) are class of compounds, which have become popular since the mid-1990s. Despite the fact that ILs are defined by one physical property (melting point), many of the potential applications are now related to their biological properties. The use of a drug as a liquid can avoid some problems related to polymorphism which can influence a drug´s solubility and thus its dosages. Also, the arrangement of the anion or cation with a specific drug might be relevant in order to: a) change the correspondent biopharmaceutical drug classification system; b) for the drug formulation process and c) the change the Active Pharmaceutical Ingredients’ (APIs). The main goal of this Thesis is the synthesis and study of physicochemical and biological properties of ILs as APIs from beta-lactam antibiotics (ampicillin, penicillin G and amoxicillin) and from the anti-fungal Amphotericin B. All the APIs used here were neutralized in a buffer appropriate hydroxide cations. The cation hydroxide was obtained on Amberlite resin (in the OH form) in order to exchange halides. The biological studies of these new compounds were made using techniques like the micro dilution and colorimetric methods. Overall a total of 19 new ILs were synthesised (6 ILs based on ampicillin, 4 ILs, based on amoxicillin, 6 ILs based on penicillin G and 4 ILs based on amphotericin B) and characterized by spectroscopic and analytical methods in order to confirm their structure and purity. The study of the biological properties of the synthesised ILs showed that some have antimicrobial activity against bacteria and yeast cells, even in resistant bacteria. Also this work allowed to show that ILs based on ampicillin could be used as anti-tumour agents. This proves that with a careful selection of the organic cation, it is possible to provoke important physico-chemical and biological alteration in the properties of ILs-APIs with great impact, having in mind their applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the recent advances in technology and miniaturization of devices such as GPS or IMU, Unmanned Aerial Vehicles became a feasible platform for a Remote Sensing applications. The use of UAVs compared to the conventional aerial platforms provides a set of advantages such as higher spatial resolution of the derived products. UAV - based imagery obtained by a user grade cameras introduces a set of problems which have to be solved, e. g. rotational or angular differences or unknown or insufficiently precise IO and EO camera parameters. In this work, UAV - based imagery of RGB and CIR type was processed using two different workflows based on PhotoScan and VisualSfM software solutions resulting in the DSM and orthophoto products. Feature detection and matching parameters influence on the result quality as well as a processing time was examined and the optimal parameter setup was presented. Products of the both workflows were compared in terms of a quality and a spatial accuracy. Both workflows were compared by presenting the processing times and quality of the results. Finally, the obtained products were used in order to demonstrate vegetation classification. Contribution of the IHS transformations was examined with respect to the classification accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: INTRODUCTION: The dengue classification proposed by the World Health Organization (WHO) in 2009 is considered more sensitive than the classification proposed by the WHO in 1997. However, no study has assessed the ability of the WHO 2009 classification to identify dengue deaths among autopsied individuals suspected of having dengue. In the present study, we evaluated the ability of the WHO 2009 classification to identify dengue deaths among autopsied individuals suspected of having dengue in Northeast Brazil, where the disease is endemic. METHODS: This retrospective study included 121 autopsied individuals suspected of having dengue in Northeast Brazil during the epidemics of 2011 and 2012. All the autopsied individuals included in this study were confirmed to have dengue based on the findings of laboratory examinations. RESULTS: The median age of the autopsied individuals was 34 years (range, 1 month to 93 years), and 54.5% of the individuals were males. According to the WHO 1997 classification, 9.1% (11/121) of the cases were classified as dengue hemorrhagic fever (DHF) and 3.3% (4/121) as dengue shock syndrome. The remaining 87.6% (106/121) of the cases were classified as dengue with complications. According to the 2009 classification, 100% (121/121) of the cases were classified as severe dengue. The absence of plasma leakage (58.5%) and platelet counts <100,000/mm3 (47.2%) were the most frequent reasons for the inability to classify cases as DHF. CONCLUSIONS: The WHO 2009 classification is more sensitive than the WHO 1997 classification for identifying dengue deaths among autopsied individuals suspected of having dengue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the current economic situation of the Portuguese municipalities, it is necessary to identify the priority investments in order to achieve a more efficient financial management. The classification of the road network of the municipality according to the occurrence of traffic accidents is fundamental to set priorities for road interventions. This paper presents a model for road network classification based on traffic accidents integrated in a geographic information system. Its practical application was developed through a case study in the municipality of Barcelos. An equation was defined to obtain a road safety index through the combination of the following indicators: severity, property damage only and accident costs. In addition to the road network classification, the application of the model allows to analyze the spatial coverage of accidents in order to determine the centrality and dispersion of the locations with the highest incidence of road accidents. This analysis can be further refined according to the nature of the accidents namely in collision, runoff and pedestrian crashes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vision-based hand gesture recognition is an area of active current research in computer vision and machine learning. Being a natural way of human interaction, it is an area where many researchers are working on, with the goal of making human computer interaction (HCI) easier and natural, without the need for any extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them, for example, to convey information. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. Hand gestures are a powerful human communication modality with lots of potential applications and in this context we have sign language recognition, the communication method of deaf people. Sign lan- guages are not standard and universal and the grammars differ from country to coun- try. In this paper, a real-time system able to interpret the Portuguese Sign Language is presented and described. Experiments showed that the system was able to reliably recognize the vowels in real-time, with an accuracy of 99.4% with one dataset of fea- tures and an accuracy of 99.6% with a second dataset of features. Although the im- plemented solution was only trained to recognize the vowels, it is easily extended to recognize the rest of the alphabet, being a solid foundation for the development of any vision-based sign language recognition user interface system.