796 resultados para Perturbed time-delay systems
Resumo:
We report on the single photon emission from single InAs/GaAs self-assembled Stranski-Krastanow quantum dots up to 80K under pulsed and continuous wave excitations. At temperature 80 K, the second-order correlation function at zero time delay, g((2))(0), is measured to be 0.422 for pulsed excitation. At the same temperature under continuous wave excitation, the photon antibunching effect is observed. Thus, our experimental results demonstrate a promising potential application of self-assembled InAs/GaAs quantum dots in single photon emission at liquid nitrogen temperature.
Resumo:
Excitation power-dependent micro-photoluminescence spectra and photon-correlation measurement are used to study the optical properties and photon statistics of single InAs quantum dots. Exciton and biexciton emissions, whose photoluminescence intensities have linear and quadratic excitation power dependences, respectively, are identified. Under pulsed laser excitation, the zero time delay peak of second order correlation function corresponding to exciton emission is well suppressed, which is a clear evidence of single photon emission.
Resumo:
For night remote surveillance, we present a method, the range-gated laser stroboscopic imaging(RGLSI), which uses a new kind of time delay integration mode to integrate target signals so that night remote surveillance can be realized by a low-energy illuminated laser. The time delay integration in this method has no influence on the video frame rate. Compared with the traditional range-gated laser imaging, RGLSI can reduce scintillation and target speckle effects and significantly improve the image signal-to-noise ratio analyzed. Even under low light level and low visibility conditions, the RGLSI system can effectively work. In a preliminary experiment, we have detected and recognized a railway bridge one kilometer away under a visibility of six kilometers, when the effective illuminated energy is 29.5 mu J.
Resumo:
提出了一种实时异构系统的集成动态调度算法.该算法通过一个新的任务分配策略以及软实时任务的服务质量QoS(quality of service)降级策略,不仅以统一方式完成了对实时异构系统中硬、软实时任务的集成动态调度,而且提高了算法的调度成功率.同时,还进行了大量的模拟研究.这些模拟以传统的近视算法为基准,将其应用在实时异构系统集成动态调度时的调度成功率与新算法进行比较,模拟结果表明,在多种任务参数取值下,新算法的调度成功率均高于传统的近视算法.
Resumo:
SAR实时成像系统在国防等很多领域都有着重要的应用 ,系统对数据可视化方面的要求也越来越高 ,但目前国内对SAR实时成像系统的数据可视化方面的研究还不多 提出了一种针对SAR实时成像系统的新的数据可视化方案 ,并已在实际的飞行成像中得到了检验 新方案实时提供的信息更全面、更直观、可分析性更强 ,具有较强的信息表现能力和双向实时交互能力 ,能够较好地辅助对图像的在线分析 还对方案的重要组成部分———缩略图的原理和实现算法做了概括介绍
Resumo:
实时多处理器系统是解决复杂实时应用的有效手段.然而,目前对实时多处理器调度算法的研究却大多集中在同构系统上,对实时异构系统的调度则研究得比较少.提出了一种新的实时异构系统的动态调度算法.该算法采用了集中式的调度方案,同时,引入了一个新的任务分配策略,从而通过提高任务可行性而提高了算法的调度成功率.此外,为了评估该算法的性能,还进行了大量的模拟研究.由于近视算法经简单修改便可以被应用到实时异构系统的动态调度中,因此,在模拟研究中,以近视算法作为基准,将其应用于实时异构系统动态调度时的性能与新算法进行了比较.模拟结果显示,在多种任务参数的取值下,新算法的调度成功率均高于近视算法.
Resumo:
实时多处理器系统的动态调度算法一直是实时系统研究中的重要课题,而评价实时调度算法性能的一个最重要的指标是调度成功率.在近视算法的基础上提出了一种新的实时多处理器系统的动态调度算法——节约算法.在该算法中,提出了一个新的处理器选择策略,从而提高了算法的调度成功率.同时,为了研究节约算法的有效性,对其进行了大量的模拟,分析了一些任务参数的变化对算法调度成功率的影响,并与近视算法的调度成功率进行了比较.模拟结果显示,节约算法的调度成功率要优于近视算法.
Resumo:
分析了实时数据库的事务特征,对以往的研究成果进行了总结,以满足事务的按时完成比率(SuccessRatio)为目标,为实时系统设计了一种使用反馈控制思想的基于优先级的实时数据库缓冲区管理算法FCLRU2 dl,并将该算法与常用的实时数据库事务调度算法和并发控制策略配合进行了测试和评估,证明了算法的优越性。实验中得到的另一个结论是在特定的事务调度算法和并发控制策略下,实时数据库不需要全部位于内存中,可以不是内存数据库。
Resumo:
An analytic closed form for the second- order or fourth- order Markovian stochastic correlation of attosecond sum- frequency polarization beat ( ASPB) can be obtained in the extremely Doppler- broadened limit. The homodyne detected ASPB signal is shown to be particularly sensitive to the statistical properties of the Markovian stochastic light. fields with arbitrary bandwidth. The physical explanation for this is that the Gaussian- amplitude. field undergoes stronger intensity. fluctuations than a chaotic. field. On the other hand, the intensity ( amplitude). fluctuations of the Gaussian- amplitude. field or the chaotic. field are always much larger than the pure phase. fluctuations of the phase-diffusion field. The field correlation has weakly influence on the ASPB signal when the laser has narrow bandwidth. In contrast, when the laser has broadband linewidth, the ASPB signal shows resonant- nonresonant cross correlation, and the sensitivities of ASPB signal to three Markovian stochastic models increase as time delay is increased. A Doppler- free precision in the measurement of the energy- level sum can be achieved with an arbitrary bandwidth. The advantage of ASPB is that the ultrafast modulation period 900as can still be improved, because the energy- level interval between ground state and excited state can be widely separated.
Resumo:
Based on the phase-conjugate polarization interference between two two-photon processes, we obtained an analytic closed form for the second-order or fourth-order Markovian stochastic correlation of the four-level attosecond sum-frequency polarization beat (FASPB) in the extremely Doppler-broadened limit. The homodyne-detected FASPB signal is shown to be particularly sensitive to the statistical properties of the Markovian stochastic light fields with arbitrary bandwidth. The different roles of the amplitude fluctuations and the phase fluctuations can be understood physically in the time-domain picture. The field correlation has a weak influence on the FASPB signal when the laser has narrow bandwidth. In contrast, when the laser has broadband linewidth, the FASPB signal shows resonant-nonresonant cross-correlation, and drastic difference for three Markovian stochastic fields. The maxima of the two two-photon signals are shifted from zero time delay to the opposite direction, and the signal exhibits damping oscillation when the laser frequency is off-resonant from the two-photon transition. A Doppler-free precision in the measurement of the energy-level sum can be achieved with an arbitrary bandwidth. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum frequency of energy levels.
Resumo:
We investigate slow-light pulse propagation in an optical fiber via transient stimulated Brillouin scattering. Space-time evolution of a generating slow-light pulse is numerically calculated by solving three-wave coupled-mode equations between a pump beam, an acoustic wave, and a counterpropagating signal pulse. Our mathematical treatments are applicable to both narrowband and broadband pump cases. We show that the time delay of 85% pulse width can be obtained for a signal pulse of the order of subnanosecond pulse width by using a broadband pump, while the signal pulse is broadened only by 40% of the input signal pulse. The physical origin of the pulse broadening and distortion is explained in terms of the temporal decay of the induced acoustic field. (C) 2009 Optical Society of America
Resumo:
We propose a method of effectively extending the stimulated Brillouin scattering (SBS) gain bandwidth in a single-mode optical fiber to reduce group-velocity-dispersion (GVD)-dependent pulse spread of SBS slow light. This can be done by overlapping doublet SBS gain spectra synthesized from a single pump laser. Numerical calculations are performed to verify our proposed method. We find that there exists the optimum spectral separation between two center frequencies of the doublet SBS gain spectrum with respect to the inherent spectral width of the pump laser, which makes it possible to effectively reduce the signal pulse broadening due to GVD. We show that the maximum time delay of the amplified signal pulse can be approximately two times longer than that by a previously reported method using a single broadband pump laser. (c) 2008 Optical Society of America.
Resumo:
The photoabsorption processes of Au2+, Au3+, and Au4+ have been investigated experimentally and theoretically in the 70-127 eV region. Using the dual laser-produced plasma technique, the 4f and 5p photoabsorption spectrum has been recorded at 50 ns time delay and was found to be dominated by a great number of lines from 4f-5d, 6d and 5p-5d, 6s transitions, which have been identified by comparison with the aid of Hartree-Fock with configuration interaction calculations. The characteristic feature of the spectrum is that satellite lines from excited configurations containing one or two 6s electrons are more important than resonance lines, and with increasing ionization, satellite contributions from states with one 6s spectator electron gradually become more important than those with two 6s spectator electrons. Based on the assumption of a normalized Boltzmann distribution among the excited states and a steady-state collisional-radiative model, we succeeded in reproducing a spectrum which is in good agreement with experiment.
Resumo:
The national science project HIRFL-CSR has recently been officially accepted. As a cyclotron and synchotron complex, it puts some particularly high demands on the control system. There are hundreds of pieces of equipment that need to be synchronized. An integrated timing control system is built to meet these demands. The output rate and the accuracy of the controller are 16 bit/mu s. The accuracy of the time delay reaches 40 ns. The timing control system is based on a typical event distribution system, which adopts the new event generation and the distribution scheme. The scheme of the tuning control system with innovation points, the architecture and the implemented method are presented in the paper.
Resumo:
The 4d photoabsorption spectra of I2+, I3+, and I4+ have been obtained in the 70-127 eV region with the dual laser-produced plasma technique at time delays ranging from 400 to 520 ns. With decreasing time delay, the dominant contribution to the spectra evolves from the I2+ to the I4+ ions, and each spectrum contains discrete 4d-nf transitions and a broad 4d-epsilon f shape resonance, which are identified with the aid of multiconfiguration Hartree-Fock calculations. The excited states decay by direct autoionization involving 5s or 5p electrons, and rates for the different processes and resulting linewidths were calculated. With increasing ionization, the 4d-epsilon f shape resonance become intense and broader in going from I2+ to I3+, and then vanishes at I5+. In addition, the discrete structure of the calculated spectrum of each ion gradually approaches the corresponding shape resonance position. Based on the assumption of a normalized Boltzmann distribution among the excited states and a steady-state collisional-radiative model, we reproduced spectra which are in good agreement with experiment.