995 resultados para PULMONARY ALVEOLAR MACROPHAGES
Resumo:
Introduction. Lung tranplantation, a consolidated treatment for end-stage lung disease, utilizes preservation solutions, such as low potassium dextran (LPD), to mitigate ischemia reperfusion injury. We sought the local development of LPD solutions in an attempt to facilitate access and enhance usage. We also sought to evaluate the effectiveness of a locally manufactured LPD solution in a rat model of ex vivo lung perfusion. Methods. We randomized the following groups \?\adult of male Wistar rats (n = 25 each): Perfadex (LPD; Vitro life, Sweden); locally manufactured LPD-glucose (LPDnac) (Farmoterapica, Brazil), and normal saline solution (SAL) with 3 ischemic times (6, 12, and 24 hours). The harvested heart lung blocks were flushed with solution at 4 C. After storage, the blocks were connected to an IL-2 Isolated Perfused Rat or Guinea Pig Lung System (Harvard Apparatus) and reperfused with homologous blood for 60 minutes. Respiratory mechanics, pulmonary artery pressure, perfusate blood gas analysis, and lung weight were measured at 10-minute intervals. Comparisons between groups and among ischemic times were performed using analysis of variance with a 5% level of significance. Results. Lungs preserved for 24 hours were nonviable and therefore excluded from the analysis. Those preserved for 6 hours showed better ventilatory mechanics when compared with 12 hours. The oxygenation capacity was not different between lungs flushed with LPD or LPDnac, regardless of the ischemic time. SAL lungs showed higher PCO(2) values than the other solutions. Lung weight increased over time during perfusion; however, there were no significant differences among the tested solutions (LPD, P = .23; LPDnac, P = .41; SAL, P = .26). We concluded that the LPDnac solution results in gas exchange were comparable to the original LPD (Perfadex); however ventilatory mechanics and edema formation were better with LPD, particularly among lungs undergoing 6 hours of cold ischemia.
Resumo:
Background-Novel therapies have recently become available for pulmonary arterial hypertension. We conducted a study to characterize mortality in a multicenter prospective cohort of patients diagnosed with idiopathic, familial, or anorexigen-associated pulmonary arterial hypertension in the modern management era. Methods and Results-Between October 2002 and October 2003, 354 consecutive adult patients with idiopathic, familial, or anorexigen-associated pulmonary arterial hypertension (56 incident and 298 prevalent cases) were prospectively enrolled. Patients were followed up for 3 years, and survival rates were analyzed. For incident cases, estimated survival (95% confidence intervals [CIs]) at 1, 2, and 3 years was 85.7% (95% CI, 76.5 to 94.9), 69.6% (95% CI, 57.6 to 81.6), and 54.9% (95% CI, 41.8 to 68.0), respectively. In a combined analysis population (incident patients and prevalent patients diagnosed within 3 years before study entry; n = 190), 1-, 2-, and 3-year survival estimates were 82.9% (95% CI, 72.4 to 95.0), 67.1% (95% CI, 57.1 to 78.8), and 58.2% (95% CI, 49.0 to 69.3), respectively. Individual survival analysis identified the following as significantly and positively associated with survival: female gender, New York Heart Association functional class I/II, greater 6-minute walk distance, lower right atrial pressure, and higher cardiac output. Multivariable analysis showed that being female, having a greater 6-minute walk distance, and exhibiting higher cardiac output were jointly significantly associated with improved survival. Conclusions-In the modern management era, idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension remains a progressive, fatal disease. Mortality is most closely associated with male gender, right ventricular hemodynamic function, and exercise limitation. (Circulation. 2010; 122: 156-163.)
Resumo:
The aim of a clinical classification of pulmonary hypertension (PH) is to group together different manifestations of disease sharing similarities in pathophysiologic mechanisms, clinical presentation, and therapeutic approaches. In 2003, during the 3rd World Symposium on Pulmonary Hypertension, the clinical classification of PH initially adopted in 1998 during the 2nd World Symposium was slightly modified. During the 4th World Symposium held in 2008, it was decided to maintain the general architecture and philosophy of the previous clinical classifications. The modifications adopted during this meeting principally concern Group 1, pulmonary arterial hypertension (PAH). This subgroup includes patients with PAH with a family history or patients with idiopathic PAH with germline mutations (e. g., bone morphogenetic protein receptor-2, activin receptor-like kinase type 1, and endoglin). In the new classification, schistosomiasis and chronic hemolytic anemia appear as separate entities in the subgroup of PAH associated with identified diseases. Finally, it was decided to place pulmonary venoocclusive disease and pulmonary capillary hemangiomatosis in a separate group, distinct from but very close to Group 1 (now called Group 1`). Thus, Group 1 of PAH is now more homogeneous. (J Am Coll Cardiol 2009;54:S43-54) (C) 2009 by the American College of Cardiology Foundation
Resumo:
The 4th World Symposium on Pulmonary Hypertension was the first international meeting to focus not only on pulmonary arterial hypertension (PAH) but also on the so-called non-PAH forms of pulmonary hypertension (PH). The term ""non-PAH PH"" summarizes those forms of PH that are found in groups 2 to 5 of the current classification of PH, that is, those forms associated with left heart disease, chronic lung disease, recurrent venous thromboembolism, and other diseases. Many of these forms of PH are much more common than PAH, but all of them have been less well studied, especially in terms of medical therapy. The working group on non-PAH PH focused mainly on 4 conditions: chronic obstructive lung disease, interstitial lung disease, chronic thromboembolic PH, and left heart disease. The medical literature regarding the role of PH in these diseases was reviewed, and recommendations regarding diagnosis and treatment of PH in these conditions are provided. Given the lack of robust clinical trials addressing PH in any of these conditions, it is important to conduct further studies to establish the role of medical therapy in non-PAH PH. (J Am Coll Cardiol 2009;54:S85-96) (C) 2009 by the American College of Cardiology Foundation
Resumo:
We review here the advances in the understanding of the immunopathology of human paracoccidioidomycosis (PCM). Its investigation must take in account the intriguing natural history of the mycosis and its agent, providing clues to the mechanisms that lead to development of disease (unbalanced host-parasite relationship?) or to the clinically silent, chronic carrier state (balanced host-parasite relationship?), in exposed people living in endemic areas. Although the literature on this subject has progressed notably, the overall picture of what are the mechanisms of susceptibility or resistance continues to be fragmentary. Major advances were seen in the description of both the cytokines/chemokines associated to the different outcomes of the host-parasite interaction, and the fungus-monocyte/macrophage interaction, and cytokines released thereof by these cells. However, relatively few studies have attempted to modify, even in vitro, the patients` unbalanced immune reactivity. Consequently, the benefits of this improved knowledge did not yet reach clinical practice. Fortunately, the previous notion of the immune system as having two nearly independent arms, the innate and adaptive immunities, leaving a large gap between them, is now being overcome. Immunologists are now trying to dissect the connections between these two arms. This will certainly lead to more productive results. Current investigations should address the innate immunity events that trigger the IL-12/IFN-gamma axis and confer protection against PCM in those individuals living in endemic areas, who have been infected, but did not develop the mycosis.
Resumo:
Background: Patients with idiopathic pulmonary fibrosis (IPF) present an important ventilatory (imitation reducing their exercise capacity. Non-invasive ventilatory support has been shown to improve exercise capacity in patients with obstructive diseases; however, its effect on IPF patients remains unknown. Objective: The present study assessed the effect of ventilatory support using proportional, assist ventilation (PAV) on exercise capacity in patients with IPF. Methods: Ten patients (61.2 +/- 9.2 year-old) were submitted to a cardiopulmonary exercise testing, plethysmography and three submaximal. exercise tests (60% of maximum load): without ventilatory support, with continuous positive airway pressure (CPAP) and PAV. Submaximal tests were performed randomly and exercise capacity, cardiovascular and ventilatory response as well as breathlessness subjective perception were evaluated. Lactate plasmatic levels were obtained before and after submaximal. exercise. Results: Our data show that patients presented a limited exercise capacity (9.7 +/- 3.8 mL O(2)/kg/min). Submaximal. test was increased in patients with PAV compared with CPAP and without ventilatory support (respectively, 11.1 +/- 8.8 min, 5.6 +/- 4.7 and 4.5 +/- 3.8 min; p < 0.05). An improved arterial oxygenation and lower subjective perception to effort was also observed in patients with IPF when exercise was performed with PAV (p < 0.05). IPF patients performing submaximal exercise with PAV also presented a lower heart rate during exercise, although systolic and diastolic pressures were not different among submaximal tests. Our results suggest that PAV can increase exercise tolerance and decrease dyspnoea and cardiac effort in patients with idiopathic pulmonary fibrosis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Vieira RP, de Andrade VF, Duarte AC, dos Santos AB, Mauad T, Martins MA, Dolhnikoff M, Carvalho CR. Aerobic conditioning and allergic pulmonary inflammation in mice. II. Effects on lung vascular and parenchymal inflammation and remodeling. Am J Physiol Lung Cell Mol Physiol 295: L670-L679, 2008. First published August 29, 2008; doi: 10.1152/ajplung.00465.2007.-Recent evidence suggests that asthma leads to inflammation and remodeling not only in the airways but also in pulmonary vessels and parenchyma. In addition, some studies demonstrated that aerobic training decreases chronic allergic inflammation in the airways; however, its effects on the pulmonary vessels and parenchyma have not been previously evaluated. Our objective was to test the hypothesis that aerobic conditioning reduces inflammation and remodeling in pulmonary vessels and parenchyma in a model of chronic allergic lung inflammation. Balb/c mice were sensitized at days 0, 14, 28, and 42 and challenged with ovalbumin ( OVA) from day 21 to day 50. Aerobic training started on day 21 and continued until day 50. Pulmonary vessel and parenchyma inflammation and remodeling were evaluated by quantitative analysis of eosinophils and mononuclear cells and by collagen and elastin contents and smooth muscle thickness. Immunohistochemistry was performed to quantify the density of positive cells to interleukin (IL)-2, IL-4, IL-5, interferon-gamma, IL-10, monocyte chemotatic protein (MCP)-1, nuclear factor (NF)-kappa B p65, and insulin-like growth factor (IGF)-I. OVA exposure induced pulmonary blood vessels and parenchyma inflammation as well as increased expression of IL-4, IL-5, MCP-1, NF-kappa B p65, and IGF-I by inflammatory cells were reduced by aerobic conditioning. OVA exposure also induced an increase in smooth muscle thickness and elastic and collagen contents in pulmonary vessels, which were reduced by aerobic conditioning. Aerobic conditioning increased the expression of IL-10 in sensitized mice. We conclude that aerobic conditioning decreases pulmonary vascular and parenchymal inflammation and remodeling in this experimental model of chronic allergic lung inflammation in mice.
Resumo:
Background & aims: There is scarce information about immune function and parenteral. fish oil (FO). The influence of a new parenteral. lipid emulsion (LE) containing fish oil (SMOF) was experimentally evaluated on neutrophils` chemotaxis and macrophages` phagocytosis. Methods: Adult mate Lewis rats (n = 40) were randomized into five groups; one non-surgical. control and four to receive parenteral LE or saline infusion through jugular vein catheterization: SMOF (mixture of 30% medium-chain triglycerides, 30% soybean, 25% olive and 15% fish oils); MCT/LCT (physical mixture of 50% medium-chain triglycerides and 50% soybean oil); MCT/LCT/FO (80% MCT/LCT supplemented with 20% FO) and SS (saline). In the 5th experimental day and after intravenous colloidal carbon injection, blood and tissue (liver, lung and spleen) samples were collected and immunological analyses were performed. Results: LE didn`t influence neutrophil chemotaxis. SMOF didn`t influence phagocytosis (p > 0.05) while MCT/LCT and MCT/LCT/FO LE increased the number of liver and lung resident macrophages that had engaged in phagocytosis compared with CO-NS and SS (p < 0.05). Only MCT/LCT/FO increased the number of spleen resident macrophages that had engaged in phagocytosis (p < 0.05). Conclusions: LE, independently of composition, had no influence on neutrophils` chemotaxis, but showed different effect on phagocytosis by macrophages. SMOF LE had neutral effect while fish oil LE enriched with MCT/LCT LE increased resident-macrophages` phagocytosis. (c) 2007 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
Objective: To identify prediction factors for the development of leptospirosis-associated pulmonary hemorrhage syndrome (LPHS). Methods: We conducted a prospective cohort study. The study comprised of 203 patients, aged >= 14 years, admitted with complications of the severe form of leptospirosis at the Emilio Ribas Institute of Infectology (Sao Paulo, Brazil) between 1998 and 2004. Laboratory and demographic data were obtained and the severity of illness score and involvement of the lungs and others organs were determined. Logistic regression was performed to identify independent predictors of LPHS. A prospective validation cohort of 97 subjects with severe form of leptospirosis admitted at the same hospital between 2004 and 2006 was used to independently evaluate the predictive value of the model. Results: The overall mortality rate was 7.9%. Multivariate logistic regression revealed that five factors were independently associated with the development of LPHS: serum potassium (mmol/L) (OR = 2.6; 95% CI = 1.1-5.9); serum creatinine (mmol/L) (OR = 1.2; 95% CI = 1.1-1.4); respiratory rate (breaths/min) (OR = 1.1; 95% CI = 1.1-1.2); presenting shock (OR = 69.9; 95% CI = 20.1-236.4), and Glasgow Coma Scale Score (GCS) < 15 (OR = 7.7; 95% CI = 1.3-23.0). We used these findings to calculate the risk of LPHS by the use of a spreadsheet. In the validation cohort, the equation classified correctly 92% of patients (Kappa statistic = 0.80). Conclusions: We developed and validated a multivariate model for predicting LPHS. This tool should prove useful in identifying LPHS patients, allowing earlier management and thereby reducing mortality. (C) 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
PDI, a redox chaperone, is involved in host cell uptake of bacteria/viruses, phagosome formation, and vascular NADPH oxidase regulation. PDI involvement in phagocyte infection by parasites has been poorly explored. Here, we investigated the role of PDI in in vitro infection of J774 macrophages by amastigote and promastigote forms of the protozoan Leishmania chagasi and assessed whether PDI associates with the macrophage NADPH oxidase complex. Promastigote but not amastigote phagocytosis was inhibited significantly by macrophage incubation with thiol/PDI inhibitors DTNB, bacitracin, phenylarsine oxide, and neutralizing PDI antibody in a parasite redox-dependent way. Binding assays indicate that PDI preferentially mediates parasite internalization. Bref-A, an ER-Golgi-disrupting agent, prevented PDI concentration in an enriched macrophage membrane fraction and promoted a significant decrease in infection. Promastigote phagocytosis was increased further by macrophage overexpression of wild-type PDI and decreased upon transfection with an antisense PDI plasmid or PDI siRNA. At later stages of infection, PDI physically interacted with L. chagasi, as revealed by immunoprecipitation data. Promastigote uptake was inhibited consistently by macrophage preincubation with catalase. Additionally, loss-or gain-of-function experiments indicated that PMA-driven NADPH oxidase activation correlated directly with PDI expression levels. Close association between PDI and the p22phox NADPH oxidase subunit was shown by confocal colocalization and coimmunoprecipitation. These results provide evidence that PDI not only associates with phagocyte NADPH oxidase but also that PDI is crucial for efficient macrophage infection by L. chagasi. J. Leukoc. Biol. 86: 989-998; 2009.
Resumo:
Leishmaniasis is a parasitic disease caused by the intramacrophage protozoa Leishmania spp. and may be fatal if left untreated. Although pentavalent antimonials are toxic and their mechanism of action is unclear, they remain the first-line drugs for treatment of leishmaniasis. An effective therapy could be achieved by delivering antileishmanial drugs to the site of infection. Compared with free drugs, antileishmanial agent-containing liposomes are more effective, less toxic and have fewer adverse side effects. The aim of this study was to develop novel meglumine antimoniate (MA)-containing liposome formulations and to analyse their antileishmanial activity and uptake by macrophages. Determination of the 50% inhibitory concentration (IC(50)) values showed that MA-containing liposomes were >= 10-fold more effective than the free drug, with a 5-fold increase in selectivity index, higher activity and reduced macrophage toxicity. The concentration required to kill 100% of intracellular amastigotes was >= 40-fold lower when MA was encapsulated in liposomes containing phosphatidylserine compared with the free drug. Fluorescence microscopy analysis revealed increased uptake of fluorescent liposomes in infected macrophages after short incubation times compared with non-infected macrophages. In conclusion, these data suggest that MA encapsulated in liposome formulations is more effective against Leishmania-infected macrophages than the non-liposomal drug. Development of liposome formulations is a valuable approach to the treatment of infectious diseases involving the mononuclear phagocyte system. (C) 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
To evaluate the effects of frequency and inspiratory plateau pressure (Pplat) during recruitment manoeuvres (RMs) on lung and distal organs in acute lung injury (ALI). We studied paraquat-induced ALI rats. At 24 h, rats were anesthetized and RMs were applied using continuous positive airway pressure (CPAP, 40 cmH(2)O/40 s) or three-different sigh strategies: (a) 180 sighs/h and Pplat = 40 cmH(2)O (S180/40), (b) 10 sighs/h and Pplat = 40 cmH(2)O (S10/40), and (c) 10 sighs/h and Pplat = 20 cmH(2)O (S10/20). S180/40 yielded alveolar hyperinflation and increased lung and kidney epithelial cell apoptosis as well as type III procollagen (PCIII) mRNA expression. S10/40 resulted in a reduction in epithelial cell apoptosis and PCIII expression. Static elastance and alveolar collapse were higher in S10/20 than S10/40. The reduction in sigh frequency led to a protective effect on lung and distal organs, while the combination with reduced Pplat worsened lung mechanics and histology.
Resumo:
The present study compared the effects of early short-term with prolonged low-dose corticosteroid therapy in acute lung injury (ALI). In total, 120 BALB/c mice were randomly divided into five groups. In the control group, saline was intratracheally (i.t.) instilled. In the ALI group, mice received Escherichia coli lipopolysaccharide (10 mu g i.t.). ALI animals were further randomised into four subgroups to receive saline (0.1 mL i.v.) or methylprednisolone (2 mg center dot kg(-1) i.v.) at 6 h, 24 h or daily (for 7 days, beginning at day 1). At 1, 3 and 8 weeks, in vivo and in vitro lung mechanics and histology (light and electron microscopy), collagen and elastic fibre content, cytokines in bronchoalveolar lavage fluid and the expression of matrix metalloproteinase (MMP)-9 and -2 were measured. In vivo (static elastance and viscoelastic pressure) and in vitro (tissue elastance and resistance) lung mechanics, alveolar collapse, cell infiltration, collagen and elastic fibre content and the expression of MMP-9 and MMP-2 were increased in ALI at 1 week. Methylprednisolone led to a complete resolution of lung mechanics, avoided fibroelastogenesis and the increase in the expression of MMP-9 and MMP-2 independent of steroid treatment design. Thus, early short-term, low-dose methylprednisolone is as effective as prolonged therapy in acute lung injury.
Resumo:
Meconium (MEC) is a potent inactivator of pulmonary surfactant. The authors studied the effects of polyethylene glycol addition to the exogenous surfactant over the lung mechanics and volumes. Human meconium was administrated to newborn rabbits. Animals were ventilated for 20 minutes and dynamic compliance, ventilatory pressure, and tidal volume were recorded. Animals were randomized into 3 study groups: MEC group (without surfactant therapy); S100 group (100 mg/kg surfactant); and PEG group (100 mg/kg porcine surfactant plus 5% PEG). After ventilation, a pulmonary pressure-volume curve was built. Histological analysis was carried out to calculate the mean alveolar size (Lm) and the distortion index (DI). Both groups treated with surfactant showed higher values of dynamic pulmonary compliance and lower ventilatory pressure, compared with the MEC group (P .05). S100 group had a larger maximum lung volume, V30, compared with the MEC group (P .05). Lm and DI values were smaller in the groups treated with surfactant than in the MEC group (P .05). No differences were observed between the S100 and PEG groups. Animals treated with surfactant showed significant improvement in pulmonary function as compared to nontreated animals. PEG added to exogenous surfactant did not improve lung mechanics or volumes.
Resumo:
In immediate fire deaths, pulmonary injury may be the main source of mortality, being important to document the histologic findings for the purpose of excluding other modes of death, such as from asphyxia with no gross findings. In this context, a group of morphologic determinants have been targeted with useful makers of pulmonary injury. To facilitate the determination of whether an individual was deceased before the start of a fire and validate the importance of parenchymal alterations in pulmonary injury in fire deaths, we studied lungs in victims of fire (N = 28) and suffocation (N = 40), creating a mathematical model using cluster analysis. For this purpose, a semiquantitative analysis of the distal parenchyma was performed to evaluate the amount of bronchiolar dilatation, overinsufflation (ductal and alveolar), collapse (ductal and alveolar), passive congestion, alveolar edema, and hemorrhage (interstitial and alveolar). These 7 histologic determinants were useful to discriminate fire (bronchiolar dilatation, ductal overinsuflation, alveolar overinsuflation, alveolar hemorrhage) from suffocation lung injuries (alveolar collapse, congestion, and edema). We conclude that these determinants should be included in the routine of forensic pathology.