540 resultados para POLYELECTROLYTE MULTILAYERS
Resumo:
A nanoparticulate ferric oxide-copper tris(2,4-di-tert-amylphenoxy)-8-quinolinolylphthalocyanine hybrid ultrathin film was constructed from alternate layers by the Langmuir-Blodgett technique. The composition, morphology and structure of the film were studied by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy, atomic force microscopy, small-angle X-ray diffraction, visible spectroscopy and polarized UV-Vis spectroscopy. All the above analyses suggest that the thin film is a kind of one-dimensional superlattice, composed of organic and inorganic components. The XPS data reveal that the nanoparticulate ferric oxide exists as an alpha-Fe2O3 phase in the films. Gas-sensing measurements show that the hybrid LB film has very fast response-recovery characteristics towards 2 ppm C2H5OH vapor.
Resumo:
Nanoparticulate ferric oxide - tris - (2,4-di-t-amylphenoxy) - (8-quinolinolyl) copper phthalocyanine Langmuir-Blodgett Z-type multilayers were obtained by using monodisperse nanoparticle ferric oxide hydrosol as the subphase. XPS data reveal that the nanoparticle ferric oxide exist as alpha -Fe2O3 phase in the films. Transition electron microscopic (TEM) image of the alternating monolayer shows that the film was highly covered by the copper phthalocyanine derivative and the nanoparticles were arranged rather closely. IR and visible spectra all give the results that the nanoparticles were deposited onto the substrate with the copper phthalocyanine derivative. The gas-sensing measurements show that the alternating LB film had very fast response-recovery characteristic to 2 ppm C2H5OH gas, and also sensitive to larger than 200 ppm NH3.
Resumo:
Heterogeneous electron transfer rate constants (k(s)) and diffusion coefficients (D) of the ferrocene and its derivatives. in a new synthetic comb polymer solvent, poly(dimethylsiloxane-g-monomethylether polyethylene glycol) (SCP), and several other polymer solvents were estimated by using microelectrodes. Also, the influence of various supporting electrolytes on k(s) and D of ferrocene was studied. It was shown that k(s) and D of ferrocene decreased with increasing anionic size of the supporting electrolyte, but k(s) tended to increase with increasing radius of the solvated cation. Also, the cationic size of the supporting electrolytes had little effects on D. The values of k(s) and D for the ferrocene derivatives in the polymer solvents were in sharp contrast to those in monomeric solvents. Thus. the k(s) values were proportional to D in the polymer solvents. which indicates that solvent dynamics control of the electrode reaction. The values of k(s) and D of ferrocene in SCP were larger than those in other polymer solvents indicating that SCP is a good polymer solvent. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Octadecylamine was derivatized with dansyl chloride (5-dimethylaminonaphthalene-1-sulfonyl chloride) In order to simplify and understand the LB films of fluorescent probe labeling proteins. its monolayer and multilayers in the absence and presence of stearic acid were deposited by LB technique. Fluorescence spectra and lifetimes of the fluorescent products were studied to elucidate the microenvironment of molecules in the LB films.
Resumo:
We describe here a controlled fabrication of ultrathin monolayer and multilayer films consisting of silicotungstic heteropolyanion SiW12O404- and a cationic polymer of quaternized poly(4-vinylpyridine) partially complexed with osmium bis(2,2'-bipyridine) on Au electrodes previously self-assembled with cysteamine monolayers based on layer-by-layer electrostatic interaction. The thus-forming monolayer and multilayer chemically modified electrodes are investigated by cyclic voltammetry on their electrochemical behavior and electrocatalytic properties. The composite ultrathin films exhibit remarkable electrocatalytic effects on the reduction of BrO3-, H2O2, and HNO2. The electrocatalytic effects on HNO2 reduction are enhanced with increasing layer number from 1 to 3 but level off with much thicker multilayers. The stability of the monolayer and multilayer films is also examined. (C) 2000 The Electrochemical Society. S0013-4651(99)04-057-4. All rights reserved.
Resumo:
Two new ultrathin multiplayer films have been successfully prepared fi-om Keggin-type heteropoly acids H-4[SiW12O40] and H-3[PMo12O40] with polyelectrolytes PEI, PSS, and PAH, using the electrostatic layer-by-layer self-assembly, technique. The XR results reveal their film thickness at nanoscale (similar to 20 nm). According to the AFM images, it is believed that the surface roughness (rough degree of film surface) of the polyelectrolyte-polyoxometalate film greatly depends on the kind of polyoxometalates.
Resumo:
1,7-Diaminoheptane (DAH) had been covalently grafted on glassy carbon electrode by amino cation radical formation, which resulted in a stable cationic monolayer under proper pH conditions. Dawson-type tungstodiphosphate anion, P2W18O626- and small molecule, Ru(NH3)(6)(3+) were alternately assembled on the DAH modified electrode through layer-by-layer electrostatic interaction. Thus-prepared multilayer film had been characterized by cyclic voltammetry and X-ray photoelectron spectroscopy. The P2W18O626- multilayers exhibit high electrocatalytic response and sensitivity towards the reduction of iodate. With the increase of the number of P2W18O626- the catalytic current was enhanced and the catalytic potential shifted positively. Iodate in table salt was determined at the modified electrode containing three layers of P2W18O626- with satisfactory results. The multilayer electrode is promising as an electrochemical sensor for the detection of trace iodate.
Resumo:
An electrochemically stable monolayer of tris(2,2'-bipyridyl)ruthenium(II) was obtained for the first time. It was based on the electrostatic attachment of Ru(bpy)(3)(2+) to the benzene sulfonic acid monolayer film, which was covalently bound onto glassy carbon electrode by the electrochemical reduction of diazobenzene sulfonic acid. The surface-confined Ru(bpy)(3)(2+) underwent reversible surface process, and reacted with the coreactant, tripropylamine, to produce electrochemiluminescence. In view of the stability of the electrode, the results strongly suggested that light was emitted from the surface-confined Ru(bpy)(3)(2+), not from the detached Ru(bpy)(3)(2+). The Ru(bpy)(3)(2+) modified electrode was used to the determination of tripropylamine. It showed good linearity in the concentration range from 5 muM to 1 muM with a detection limit of 1 muM (S/N = 4). The good stability of the Ru(bpy)(3)(2+) modified electrode also showed that the benzene sulfonic acid monolayer film prepared can be served as an excellent support to construct multilayers. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Stable monolayer of the polyaniline doped with camphor sulfonic acid at the air-water interface has been obtained, of which multilayers have been successfully deposited by Langmuir-Blodgett technique onto CaF2 substrate. The limiting mean molecular area and collapse pressure are found to be 0.294 nm(2) and 41 mN/m, respectively. The multilayers were characterized by IR and W-Vis-NIR spectroscopies. X-ray small-angle diffraction data show that the multilayer was periodic layer structure with the layer spacing of 1.60 nm. The comparisons are also made with characterization of the casting film. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
The working principle of piezoelectric mass sensor is generally introduced. Tbe recent progress about the method of immobilizing biomolecule, such as antigen, antibody etc. onto piezoelectric crystal surfaces has been reported, including the way of directly immobilizing biomolecules, and immobilizing them using protein A(or protein G), polymer, silianizition agent, SAM technique, LB monolayer technique etc.. At last, some recent trends of the field has been outlined.
Resumo:
The possibility of the formation of Langmuir-Blodgett (LB) films with dimethyldioctadecylammonium (DODA) after the addition of cobalt(II)-substituted Dawson-type tungstodiphosphate anion (briefed as (H2O)(CoP2W17O618-)-P-11) in the subphase has been explored. Marked modifications of the compression isotherms are observed when this anion is dissolved in the subphase, which demonstrates that the polyanions interact with the monolayers. LB films have been readily obtained from this system. The adsorption Fourier transform IR (FT IR) spectroscopy, atomic force microscopy (AFM), X-ray diffraction (XRD) and cyclic voltammetry (CV) have been used to investigate the morphological and molecular structure of the deposited film. The FT IR results showed the presence of the polyanion within the LB films, and the shift for its characteristic bands may be related to the presence of positively charged DODA. AFM measurement reveals that the LB films of DODA/(H2O)(CoP2W17O618)-P-II are regularly and uniformly deposited on the substrate. XRD experiments prove that the lamellar structure of the LB films of DODA/(H2O)(CoP2W17O618-)-P-II is well-defined. The LB films of DODA/(H2O)(CoP2W17O618-)-P-II immobilized onto an indium-oxide (ITO) glass, in aqueous solutions of pH 2.0-5.0, show quite facile redox reactions even for multilayers. All the experiments carried out in the present study suggest that the new materials of heteropolyanions can be formed by LB techniques and beneficial physicochemical properties of heteropolyanions can be maintained/enhanced through molecular-level design. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
The heterogeneous electron transfer rate constant (k(s)) of dimethylferrocene (DMFc) was estimated using cyclic voltammetric peak potential separations taken typically in a mixed diffusion geometry regime in a polyelectrolyte, and the diffusion coefficient (D) of DMFc was obtained using a steady-state voltammogram. The heterogeneous electron transfer rate constant and diffusion coefficient are both smaller by about 100-fold in the polymeric solvent than in the monomeric solvent. The results are in agreement with the difference of longitudinal dielectric relaxation time (tau(L)) in the two kinds of solvents, poly(ethylene glycol) (PEG) and CH3CN, indicating that k(s) varies inversely with tau(L); k(s), is proportional to D of DMFc. Both D and k(s) of DMFc in PEG containing different supporting electrolytes and at different temperatures have been estimated. These results show that D and k(s) of DMFc increase with increasing temperature in the polyelectrolyte, whereas they vary only slightly with changing the supporting electrolyte.
Resumo:
This paper presents a microelectrode voltammetric determination of heterogeneous electron transfer rate constants (k(s)) and diffusion coefficients (D) of 7,7,8',8 '-tetracyanoquinodimethane (TCNQ) in polyelectrolytes. The diffusion coefficients are estimated using cyclic voltammetry under linear diffusion conditions, and the heterogeneous electron transfer rate constants are obtained under mixed linear and radial diffusion in the polyelectrolyte. k(s) and D increase with increasing temperature, and the activation barriers of the electrode reaction for reduction of TCNQ are obtained. On the other hand, the dependencies of D and k(s) of TCNQ on the size and charge of the counterion are compared in the polyelectrolyte. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The thermal and chemical stabilities of Mo/Si multilayer structure used in Bragg-Fresnel optics were studied to get optimal technological parameters of pattern generation. Mo/Si multilayers were annealed at temperature ranging from 360 to 770 K, treated with acetone and 5 parts per thousand NaOH solution, and characterized by small-angle x-ray diffraction technique as well as x-ray photoelectron spectroscopy, and Olympus microscopy.
Resumo:
Solution properties of polyaniline (PAn) doped by camphorsulfonic acid (CSA) were examined. PAn-CSA behaves like a polyelectrolyte to different extents depending on the solvent used. In an m-cresol/chloroform solution, PAn-CSA exhibits an expanded chain conformation because of its polyelectrolytic properties. Dilute and concentrated solution properties of PAn-CSA indicate that PAn-CSA is a semirigid polymer which has strong interchain interactions.