950 resultados para PANCREATIC-ISLETS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis

Aggregation of human islet amyloid polypeptide (hIAPP) as islet amyloid is associated with increased beta cell apoptosis and reduced beta cell mass in type 2 diabetes. Islet amyloid formation induces oxidative stress, which contributes to beta cell apoptosis. The cJUN N-terminal kinase (JNK) pathway is a critical mediator of beta cell apoptosis in response to stress stimuli including oxidative stress and exogenous application of hIAPP. We determined whether amyloid formation by endogenous hIAPP mediates beta cell apoptosis through JNK activation and downstream signalling pathways.
Methods

hIAPP transgenic and non-transgenic mouse islets were cultured for up to 144 h in 16.7 mmol/l glucose to induce islet amyloid in the presence or absence of the amyloid inhibitor Congo Red or a cell-permeable JNK inhibitor. Amyloid, beta cell apoptosis, JNK signalling and activation of downstream targets in the intrinsic and extrinsic apoptotic pathways were measured.
Results

JNK activation occurred with islet amyloid formation in hIAPP transgenic islets after 48 and 144 h in culture. Neither high glucose nor the hIAPP transgene alone was sufficient to activate JNK independent of islet amyloid. Inhibition of islet amyloid formation with Congo Red reduced beta cell apoptosis and partially decreased JNK activation. JNK inhibitor treatment reduced beta cell apoptosis without affecting islet amyloid. Islet amyloid increased mRNA levels of markers of the extrinsic (Fas, Fadd) and intrinsic (Bim [also known as Bcl2l11]) apoptotic pathways, caspase 3 and the anti-apoptotic molecule Bclxl (also known as Bcl2l1) in a JNK-dependent manner.
Conclusions/interpretation

Islet amyloid formation induces JNK activation, which upregulates predominantly pro-apoptotic signals in both extrinsic and intrinsic pathways, resulting in beta cell apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin is an attractive therapy for diabetes, as it increases insulin release and may preserve β-cell mass. However, sitagliptin also increases β-cell release of human islet amyloid polypeptide (hIAPP), the peptide component of islet amyloid, which is cosecreted with insulin. Thus, sitagliptin treatment may promote islet amyloid formation and its associated β-cell toxicity. Conversely, metformin treatment decreases islet amyloid formation by decreasing β-cell secretory demand and could therefore offset sitagliptin's potential proamyloidogenic effects. Sitagliptin treatment has also been reported to be detrimental to the exocrine pancreas. We investigated whether long-term sitagliptin treatment, alone or with metformin, increased islet amyloid deposition and β-cell toxicity and induced pancreatic ductal proliferation, pancreatitis, and/or pancreatic metaplasia/neoplasia. hIAPP transgenic and nontransgenic littermates were followed for 1 yr on no treatment, sitagliptin, metformin, or the combination. Islet amyloid deposition, β-cell mass, insulin release, and measures of exocrine pancreas pathology were determined. Relative to untreated mice, sitagliptin treatment did not increase amyloid deposition, despite increasing hIAPP release, and prevented amyloid-induced β-cell loss. Metformin treatment alone or with sitagliptin decreased islet amyloid deposition to a similar extent vs untreated mice. Ductal proliferation was not altered among treatment groups, and no evidence of pancreatitis, ductal metaplasia, or neoplasia were observed. Therefore, long-term sitagliptin treatment stimulates β-cell secretion without increasing amyloid formation and protects against amyloid-induced β-cell loss. This suggests a novel effect of sitagliptin to protect the β-cell in type 2 diabetes that appears to occur without adverse effects on the exocrine pancreas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fruit bat Artibeus lituratus absorbs large amounts of glucose in short periods of time and maintains normoglycemia even after a prolonged starvation period. Based on these data, we aimed to investigate various aspects related with glucose homeostasis analyzing: blood glucose and insulin levels, intraperitoneal glucose and insulin tolerance tests (ipGTT and ipITT), glucose-stimulated insulin secretion (2.8, 5.6 or 8.3 mmol/L glucose) in pancreas fragments, cellular distribution of beta cells, and the amount of pAkt/Akt in the pectoral muscle and liver. Blood glucose levels were higher in fed bats (6.88 +/- 0.5 mmol/L) than fasted bats (4.0 +/- 0.8 mmol/L), whereas insulin levels were similar in both conditions. The values of the area-under-the curve obtained from ipGTT were significantly higher when bats received 2 (5.5-fold) or 3 g/kg glucose (7.5-fold) b.w compared to control (saline). These bats also exhibited a significant decrease of blood glucose values after insulin administration during the iplTT. Insulin secretion from fragments of pancreas under physiological concentrations of glucose (5.6 or 8.3 mmol/L) was similar but higher than in 2.8 mmol/L glucose 1.8- and 2.0-fold, respectively. These bats showed a marked beta-cell distribution along the pancreas, and the pancreatic beta cells are not exclusively located at the central part of the islet. The insulin-induced Akt phosphorylation was more pronounced in the pectoral muscle, compared to liver. The high sensitivity to glucose and insulin, the proper insulin response to glucose, and the presence of an apparent large beta-cell population could represent benefits for the management of high influx of glucose from a carbohydrate-rich meal, which permits appropriate glucose utilization. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethnopharmacological relevance: Uncaria tomentosa (Willd.) DC (Rubiaceae) is a species native to the Amazon rainforest and surrounding tropical areas that is endowed with immunomodulatory properties and widely used around the world. In this study we investigated the immunomodulatory potential of Uncaria tomentosa (UT) aqueous-ethanol extract on the progression of immune-mediated diabetes.Materials and methods: C57BL/6 male mice were injected with MLDS (40 mg/kg) and orally treated with UT at 10-400 mg/kg during 21 days. Control groups received MLDS alone or the respective dilution vehicle. Pancreatic mononuclear infiltrate and beta-cell insulin content were analyzed by HE and immunohistochemical staining, respectively, and measured by digital morphometry. Lymphocyte immunophenotyping and cytokine production were determined by flow cytometry analysis.Results: Treating the animals with 50-400 mg/kg of UT caused a significant reduction in the glycemic levels, as well as in the incidence of diabetes. The morphometric analysis of insulitis revealed a clear protective effect. Animals treated with UT at 400 mg/kg presented a higher number of intact islets and a significant inhibition of destructive insulitis. Furthermore, a significant protection against the loss of insulin-secreting presented beta-cells was achieved, as observed by a careful immunohistochemical evaluation. The phenotypic analysis indicated that the groups treated with higher doses (100-400 mg/kg) presented CD4(+) and CD8(+) T-cell values similar to those observed in healthy animals. These same higher doses also increased the number of CD4(+)CD25(+)Foxp3(+) regulatory T-cells. Moreover, the extract modulated the production of Th1 and Th2, with increased levels of IL-4 and IL-5.Conclusions: The extract was effective to prevent the progression of immune-mediated diabetes by distinct pathways. (C) 2011 Elsevier B.V. All rights reserved.