996 resultados para Optimal tests
Resumo:
Longitudinal studies of entrepreneurial career development are rare, and current knowledge of self-employment patterns and their relationships with individual difference characteristics is limited. In this study, the authors analyzed employment data from a subsample of 514 participants from the German Socio-Economic Panel study (1984–2008). Results of an optimal matching analysis indicated that a continuous self-employment pattern could be distinguished from four alternative employment patterns (change from employment to self-employment, full-time employees, part-time employees, and farmers). Results of a multinomial logistic regression analysis showed that certain socio-demographic characteristics (i.e., age and gender) and personality characteristics (i.e., conscientiousness and risk-taking propensity) were related to the likelihood of following a continuous self-employment pattern compared to the other employment patterns. Implications for future research on entrepreneurial career development are discussed.
Resumo:
Phosphorus is a nutrient needed in crop production. While boosting crop yields it may also accelerate eutrophication in the surface waters receiving the phosphorus runoff. The privately optimal level of phosphorus use is determined by the input and output prices, and the crop response to phosphorus. Socially optimal use also takes into account the impact of phosphorus runoff on water quality. Increased eutrophication decreases the economic value of surface waters by Deteriorating fish stocks, curtailing the potential for recreational activities and by increasing the probabilities of mass algae blooms. In this dissertation, the optimal use of phosphorus is modelled as a dynamic optimization problem. The potentially plant available phosphorus accumulated in soil is treated as a dynamic state variable, the control variable being the annual phosphorus fertilization. For crop response to phosphorus, the state variable is more important than the annual fertilization. The level of this state variable is also a key determinant of the runoff of dissolved, reactive phosphorus. Also the loss of particulate phosphorus due to erosion is considered in the thesis, as well as its mitigation by constructing vegetative buffers. The dynamic model is applied for crop production on clay soils. At the steady state, the analysis focuses on the effects of prices, damage parameterization, discount rate and soil phosphorus carryover capacity on optimal steady state phosphorus use. The economic instruments needed to sustain the social optimum are also analyzed. According to the results the economic incentives should be conditioned on soil phosphorus values directly, rather than on annual phosphorus applications. The results also emphasize the substantial effects the differences in varying discount rates of the farmer and the social planner have on optimal instruments. The thesis analyzes the optimal soil phosphorus paths from its alternative initial levels. It also examines how erosion susceptibility of a parcel affects these optimal paths. The results underline the significance of the prevailing soil phosphorus status on optimal fertilization levels. With very high initial soil phosphorus levels, both the privately and socially optimal phosphorus application levels are close to zero as the state variable is driven towards its steady state. The soil phosphorus processes are slow. Therefore, depleting high phosphorus soils may take decades. The thesis also presents a methodologically interesting phenomenon in problems of maximizing the flow of discounted payoffs. When both the benefits and damages are related to the same state variable, the steady state solution may have an interesting property, under very general conditions: The tail of the payoffs of the privately optimal path as well as the steady state may provide a higher social welfare than the respective tail of the socially optimal path. The result is formalized and an applied to the created framework of optimal phosphorus use.
Resumo:
The study deals with the irrigation planning of the Cauvery river basin in peninsular India which is extensively developed in the downstream reaches and has a high potential for development in the upper reaches. A four-reservoir system is modelled on a monthly basis by using a mathematical programming (LP) formulation to find optimum cropping patterns, subject to land, water and downstream release constraints, and applied to the Cauvery basin. Two objectives, maximizing net economic benefits and maximizing irrigated cropped area, considered in the model are analysed in the context of multiobjective planning and the trade-offs discussed.
Resumo:
ALICE (A Large Ion Collider Experiment) is an experiment at CERN (European Organization for Nuclear Research), where a heavy-ion detector is dedicated to exploit the unique physics potential of nucleus-nucleus interactions at LHC (Large Hadron Collider) energies. In a part of that project, 716 so-called type V4 modules were assembles in Detector Laboratory of Helsinki Institute of Physics during the years 2004 - 2006. Altogether over a million detector strips has made this project the most massive particle detector project in the science history of Finland. One ALICE SSD module consists of a double-sided silicon sensor, two hybrids containing 12 HAL25 front end readout chips and some passive components, such has resistors and capacitors. The components are connected together by TAB (Tape Automated Bonding) microcables. The components of the modules were tested in every assembly phase with comparable electrical tests to ensure the reliable functioning of the detectors and to plot the possible problems. The components were accepted or rejected by the limits confirmed by ALICE collaboration. This study is concentrating on the test results of framed chips, hybrids and modules. The total yield of the framed chips is 90.8%, hybrids 96.1% and modules 86.2%. The individual test results have been investigated in the light of the known error sources that appeared during the project. After solving the problems appearing during the learning-curve of the project, the material problems, such as defected chip cables and sensors, seemed to induce the most of the assembly rejections. The problems were typically seen in tests as too many individual channel failures. Instead, the bonding failures rarely caused the rejections of any component. One sensor type among three different sensor manufacturers has proven to have lower quality than the others. The sensors of this manufacturer are very noisy and their depletion voltage are usually outside of the specification given to the manufacturers. Reaching 95% assembling yield during the module production demonstrates that the assembly process has been highly successful.
Resumo:
Euler–Bernoulli beams are distributed parameter systems that are governed by a non-linear partial differential equation (PDE) of motion. This paper presents a vibration control approach for such beams that directly utilizes the non-linear PDE of motion, and hence, it is free from approximation errors (such as model reduction, linearization etc.). Two state feedback controllers are presented based on a newly developed optimal dynamic inversion technique which leads to closed-form solutions for the control variable. In one formulation a continuous controller structure is assumed in the spatial domain, whereas in the other approach it is assumed that the control force is applied through a finite number of discrete actuators located at predefined discrete locations in the spatial domain. An implicit finite difference technique with unconditional stability has been used to solve the PDE with control actions. Numerical simulation studies show that the beam vibration can effectively be decreased using either of the two formulations.
Resumo:
Deriving an estimate of optimal fishing effort or even an approximate estimate is very valuable for managing fisheries with multiple target species. The most challenging task associated with this is allocating effort to individual species when only the total effort is recorded. Spatial information on the distribution of each species within a fishery can be used to justify the allocations, but often such information is not available. To determine the long-term overall effort required to achieve maximum sustainable yield (MSY) and maximum economic yield (MEY), we consider three methods for allocating effort: (i) optimal allocation, which optimally allocates effort among target species; (ii) fixed proportions, which chooses proportions based on past catch data; and (iii) economic allocation, which splits effort based on the expected catch value of each species. Determining the overall fishing effort required to achieve these management objectives is a maximizing problem subject to constraints due to economic and social considerations. We illustrated the approaches using a case study of the Moreton Bay Prawn Trawl Fishery in Queensland (Australia). The results were consistent across the three methods. Importantly, our analysis demonstrated the optimal total effort was very sensitive to daily fishing costs—the effort ranged from 9500–11 500 to 6000–7000, 4000 and 2500 boat-days, using daily cost estimates of $0, $500, $750, and $950, respectively. The zero daily cost corresponds to the MSY, while a daily cost of $750 most closely represents the actual present fishing cost. Given the recent debate on which costs should be factored into the analyses for deriving MEY, our findings highlight the importance of including an appropriate cost function for practical management advice. The approaches developed here could be applied to other multispecies fisheries where only aggregated fishing effort data are recorded, as the literature on this type of modelling is sparse.
Resumo:
The Minimum Description Length (MDL) principle is a general, well-founded theoretical formalization of statistical modeling. The most important notion of MDL is the stochastic complexity, which can be interpreted as the shortest description length of a given sample of data relative to a model class. The exact definition of the stochastic complexity has gone through several evolutionary steps. The latest instantation is based on the so-called Normalized Maximum Likelihood (NML) distribution which has been shown to possess several important theoretical properties. However, the applications of this modern version of the MDL have been quite rare because of computational complexity problems, i.e., for discrete data, the definition of NML involves an exponential sum, and in the case of continuous data, a multi-dimensional integral usually infeasible to evaluate or even approximate accurately. In this doctoral dissertation, we present mathematical techniques for computing NML efficiently for some model families involving discrete data. We also show how these techniques can be used to apply MDL in two practical applications: histogram density estimation and clustering of multi-dimensional data.
Resumo:
Digital image
Resumo:
In this paper we consider the problem of computing an “optimal” popular matching. We assume that our input instance View the MathML source admits a popular matching and here we are asked to return not any popular matching but an optimal popular matching, where the definition of optimality is given as a part of the problem statement; for instance, optimality could be fairness in which case we are required to return a fair popular matching. We show an O(n2+m) algorithm for this problem, assuming that the preference lists are strict, where m is the number of edges in G and n is the number of applicants.
Resumo:
Optimal bang-coast maintenance policies for a machine, subject to failure, are considered. The approach utilizes a semi-Markov model for the system. A simplified model for modifying the probability of machine failure with maintenance is employed. A numerical example is presented to illustrate the procedure and results.
Resumo:
Background Skin temperature assessment is a promising modality for early detection of diabetic foot problems, but its diagnostic value has not been studied. Our aims were to investigate the diagnostic value of different cutoff skin temperature values for detecting diabetes-related foot complications such as ulceration, infection, and Charcot foot and to determine urgency of treatment in case of diagnosed infection or a red-hot swollen foot. Materials and Methods The plantar foot surfaces of 54 patients with diabetes visiting the outpatient foot clinic were imaged with an infrared camera. Nine patients had complications requiring immediate treatment, 25 patients had complications requiring non-immediate treatment, and 20 patients had no complications requiring treatment. Average pixel temperature was calculated for six predefined spots and for the whole foot. We calculated the area under the receiver operating characteristic curve for different cutoff skin temperature values using clinical assessment as reference and defined the sensitivity and specificity for the most optimal cutoff temperature value. Mean temperature difference between feet was analyzed using the Kruskal–Wallis tests. Results The most optimal cutoff skin temperature value for detection of diabetes-related foot complications was a 2.2°C difference between contralateral spots (sensitivity, 76%; specificity, 40%). The most optimal cutoff skin temperature value for determining urgency of treatment was a 1.35°C difference between the mean temperature of the left and right foot (sensitivity, 89%; specificity, 78%). Conclusions Detection of diabetes-related foot complications based on local skin temperature assessment is hindered by low diagnostic values. Mean temperature difference between two feet may be an adequate marker for determining urgency of treatment.
Resumo:
A spatial sampling design that uses pair-copulas is presented that aims to reduce prediction uncertainty by selecting additional sampling locations based on both the spatial configuration of existing locations and the values of the observations at those locations. The novelty of the approach arises in the use of pair-copulas to estimate uncertainty at unsampled locations. Spatial pair-copulas are able to more accurately capture spatial dependence compared to other types of spatial copula models. Additionally, unlike traditional kriging variance, uncertainty estimates from the pair-copula account for influence from measurement values and not just the configuration of observations. This feature is beneficial, for example, for more accurate identification of soil contamination zones where high contamination measurements are located near measurements of varying contamination. The proposed design methodology is applied to a soil contamination example from the Swiss Jura region. A partial redesign of the original sampling configuration demonstrates the potential of the proposed methodology.
Resumo:
This paper presents an analysis of an optimal linear filter in the presence of constraints on the moan squared values of the estimates from the viewpoint of singular optimal control. The singular arc has been shown to satisfy the generalized Legcndrc-Clebseh condition and Jacobson's condition. Both the cases of white measurement noise and coloured measurement noise are considered. The constrained estimate is shown to be a linear transformation of the unconstrained Kalman estimate.
Resumo:
The stochastic version of Pontryagin's maximum principle is applied to determine an optimal maintenance policy of equipment subject to random deterioration. The deterioration of the equipment with age is modelled as a random process. Next the model is generalized to include random catastrophic failure of the equipment. The optimal maintenance policy is derived for two special probability distributions of time to failure of the equipment, namely, exponential and Weibull distributions Both the salvage value and deterioration rate of the equipment are treated as state variables and the maintenance as a control variable. The result is illustrated by an example